Robust filtering with quantile regression
| Main Author: | |
|---|---|
| Publication Date: | 2022 |
| Other Authors: | |
| Format: | Article |
| Language: | eng |
| Source: | Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| Download full: | http://hdl.handle.net/10400.14/38332 |
Summary: | This working paper proposes a new, practical method to compute the non-linear Mosheiov-Raveh (MR) filter using least absolute deviations (LAD) instead of the linear programming approach proposed by these two authors. This paper is embodied with an implementation in the R programming language of the proposed method which facilitates the computation of the MR filter in current applications to produce a robust estimate, namely, of the GDP trend growth. This technique may be appropriate to deal with non linear time series or structural changes. |
| id |
RCAP_d4ba0a73c9803b3219c39dbe27d2c63c |
|---|---|
| oai_identifier_str |
oai:repositorio.ucp.pt:10400.14/38332 |
| network_acronym_str |
RCAP |
| network_name_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| repository_id_str |
https://opendoar.ac.uk/repository/7160 |
| spelling |
Robust filtering with quantile regressionBusiness cyclesNon linear time seriesRobust filteringSoftwareThis working paper proposes a new, practical method to compute the non-linear Mosheiov-Raveh (MR) filter using least absolute deviations (LAD) instead of the linear programming approach proposed by these two authors. This paper is embodied with an implementation in the R programming language of the proposed method which facilitates the computation of the MR filter in current applications to produce a robust estimate, namely, of the GDP trend growth. This technique may be appropriate to deal with non linear time series or structural changes.VeritatiAssunção, João BorgesFernandes, Pedro Afonso2022-07-21T14:18:36Z2022-02-212022-02-21T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10400.14/38332enginfo:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2025-03-13T14:28:19Zoai:repositorio.ucp.pt:10400.14/38332Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-29T02:05:19.472717Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse |
| dc.title.none.fl_str_mv |
Robust filtering with quantile regression |
| title |
Robust filtering with quantile regression |
| spellingShingle |
Robust filtering with quantile regression Assunção, João Borges Business cycles Non linear time series Robust filtering Software |
| title_short |
Robust filtering with quantile regression |
| title_full |
Robust filtering with quantile regression |
| title_fullStr |
Robust filtering with quantile regression |
| title_full_unstemmed |
Robust filtering with quantile regression |
| title_sort |
Robust filtering with quantile regression |
| author |
Assunção, João Borges |
| author_facet |
Assunção, João Borges Fernandes, Pedro Afonso |
| author_role |
author |
| author2 |
Fernandes, Pedro Afonso |
| author2_role |
author |
| dc.contributor.none.fl_str_mv |
Veritati |
| dc.contributor.author.fl_str_mv |
Assunção, João Borges Fernandes, Pedro Afonso |
| dc.subject.por.fl_str_mv |
Business cycles Non linear time series Robust filtering Software |
| topic |
Business cycles Non linear time series Robust filtering Software |
| description |
This working paper proposes a new, practical method to compute the non-linear Mosheiov-Raveh (MR) filter using least absolute deviations (LAD) instead of the linear programming approach proposed by these two authors. This paper is embodied with an implementation in the R programming language of the proposed method which facilitates the computation of the MR filter in current applications to produce a robust estimate, namely, of the GDP trend growth. This technique may be appropriate to deal with non linear time series or structural changes. |
| publishDate |
2022 |
| dc.date.none.fl_str_mv |
2022-07-21T14:18:36Z 2022-02-21 2022-02-21T00:00:00Z |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10400.14/38332 |
| url |
http://hdl.handle.net/10400.14/38332 |
| dc.language.iso.fl_str_mv |
eng |
| language |
eng |
| dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.source.none.fl_str_mv |
reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia instacron:RCAAP |
| instname_str |
FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
| instacron_str |
RCAAP |
| institution |
RCAAP |
| reponame_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| collection |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| repository.name.fl_str_mv |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
| repository.mail.fl_str_mv |
info@rcaap.pt |
| _version_ |
1833601224409088000 |