A robust method to date recessions and compute output gaps: the portuguese case

Bibliographic Details
Main Author: Assunção, João B.
Publication Date: 2024
Other Authors: Fernandes, Pedro Afonso
Format: Article
Language: eng
Source: Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
Download full: http://hdl.handle.net/10400.14/45515
Summary: The application of the Hodrick-Prescott (HP) and other linear filters to remove trend and extract business cycles in macroeconomic time series is a common practice despite its limitations, namely, in signaling recessions. Median filters and other nonlinear techniques can perform better by accommodating sharp but fundamental changes in the growth trend and passing only the relevant information to the cycle component, a possible measure of the output gap of an economy. An application to the Portuguese relevant macroeconomic series confirmed the robustness of nonlinear filters in signaling the recessions and recoveries. In particular, the Mosheiov-Raveh (MR) filter estimates piecewise trend growth paths that naturally date the specific periods of the Portuguese economy since 1977.
id RCAP_f08a733ef10bae46d043cb531406a4ca
oai_identifier_str oai:repositorio.ucp.pt:10400.14/45515
network_acronym_str RCAP
network_name_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository_id_str https://opendoar.ac.uk/repository/7160
spelling A robust method to date recessions and compute output gaps: the portuguese caseBusiness cyclesC22E32Linear and nonlinear filteringTime series modelsTrend estimationThe application of the Hodrick-Prescott (HP) and other linear filters to remove trend and extract business cycles in macroeconomic time series is a common practice despite its limitations, namely, in signaling recessions. Median filters and other nonlinear techniques can perform better by accommodating sharp but fundamental changes in the growth trend and passing only the relevant information to the cycle component, a possible measure of the output gap of an economy. An application to the Portuguese relevant macroeconomic series confirmed the robustness of nonlinear filters in signaling the recessions and recoveries. In particular, the Mosheiov-Raveh (MR) filter estimates piecewise trend growth paths that naturally date the specific periods of the Portuguese economy since 1977.VeritatiAssunção, João B.Fernandes, Pedro Afonso2024-06-18T14:12:40Z2025-01-012025-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10400.14/45515eng1617-982X10.1007/s10258-024-00259-4info:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2025-03-13T10:34:57Zoai:repositorio.ucp.pt:10400.14/45515Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-29T01:36:02.641147Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse
dc.title.none.fl_str_mv A robust method to date recessions and compute output gaps: the portuguese case
title A robust method to date recessions and compute output gaps: the portuguese case
spellingShingle A robust method to date recessions and compute output gaps: the portuguese case
Assunção, João B.
Business cycles
C22
E32
Linear and nonlinear filtering
Time series models
Trend estimation
title_short A robust method to date recessions and compute output gaps: the portuguese case
title_full A robust method to date recessions and compute output gaps: the portuguese case
title_fullStr A robust method to date recessions and compute output gaps: the portuguese case
title_full_unstemmed A robust method to date recessions and compute output gaps: the portuguese case
title_sort A robust method to date recessions and compute output gaps: the portuguese case
author Assunção, João B.
author_facet Assunção, João B.
Fernandes, Pedro Afonso
author_role author
author2 Fernandes, Pedro Afonso
author2_role author
dc.contributor.none.fl_str_mv Veritati
dc.contributor.author.fl_str_mv Assunção, João B.
Fernandes, Pedro Afonso
dc.subject.por.fl_str_mv Business cycles
C22
E32
Linear and nonlinear filtering
Time series models
Trend estimation
topic Business cycles
C22
E32
Linear and nonlinear filtering
Time series models
Trend estimation
description The application of the Hodrick-Prescott (HP) and other linear filters to remove trend and extract business cycles in macroeconomic time series is a common practice despite its limitations, namely, in signaling recessions. Median filters and other nonlinear techniques can perform better by accommodating sharp but fundamental changes in the growth trend and passing only the relevant information to the cycle component, a possible measure of the output gap of an economy. An application to the Portuguese relevant macroeconomic series confirmed the robustness of nonlinear filters in signaling the recessions and recoveries. In particular, the Mosheiov-Raveh (MR) filter estimates piecewise trend growth paths that naturally date the specific periods of the Portuguese economy since 1977.
publishDate 2024
dc.date.none.fl_str_mv 2024-06-18T14:12:40Z
2025-01-01
2025-01-01T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10400.14/45515
url http://hdl.handle.net/10400.14/45515
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 1617-982X
10.1007/s10258-024-00259-4
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron:RCAAP
instname_str FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron_str RCAAP
institution RCAAP
reponame_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
collection Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository.name.fl_str_mv Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
repository.mail.fl_str_mv info@rcaap.pt
_version_ 1833601057339473920