Integration of Multi-Omics Data for the Classification of Glioma Types and Identification of Novel Biomarkers
Main Author: | |
---|---|
Publication Date: | 2024 |
Other Authors: | , |
Format: | Article |
Language: | eng |
Source: | Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
Download full: | http://hdl.handle.net/10362/179276 |
Summary: | Publisher Copyright: © The Author(s) 2024. |
id |
RCAP_d15a473be7d3616f6b4b2df12dc143e0 |
---|---|
oai_identifier_str |
oai:run.unl.pt:10362/179276 |
network_acronym_str |
RCAP |
network_name_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository_id_str |
https://opendoar.ac.uk/repository/7160 |
spelling |
Integration of Multi-Omics Data for the Classification of Glioma Types and Identification of Novel BiomarkersCanonical correlation analysisclassificationgliomamulti-omicssurvival analysisBiochemistryMolecular BiologyComputer Science ApplicationsComputational MathematicsApplied MathematicsSDG 3 - Good Health and Well-beingPublisher Copyright: © The Author(s) 2024.Glioma is currently one of the most prevalent types of primary brain cancer. Given its high level of heterogeneity along with the complex biological molecular markers, many efforts have been made to accurately classify the type of glioma in each patient, which, in turn, is critical to improve early diagnosis and increase survival. Nonetheless, as a result of the fast-growing technological advances in high-throughput sequencing and evolving molecular understanding of glioma biology, its classification has been recently subject to significant alterations. In this study, we integrate multiple glioma omics modalities (including mRNA, DNA methylation, and miRNA) from The Cancer Genome Atlas (TCGA), while using the revised glioma reclassified labels, with a supervised method based on sparse canonical correlation analysis (DIABLO) to discriminate between glioma types. We were able to find a set of highly correlated features distinguishing glioblastoma from lower-grade gliomas (LGGs) that were mainly associated with the disruption of receptor tyrosine kinases signaling pathways and extracellular matrix organization and remodeling. Concurrently, the discrimination of the LGG types was characterized primarily by features involved in ubiquitination and DNA transcription processes. Furthermore, we could identify several novel glioma biomarkers likely helpful in both diagnosis and prognosis of the patients, including the genes PPP1R8, GPBP1L1, KIAA1614, C14orf23, CCDC77, BVES, EXD3, CD300A, and HEPN1. Collectively, this comprehensive approach not only allowed a highly accurate discrimination of the different TCGA glioma patients but also presented a step forward in advancing our comprehension of the underlying molecular mechanisms driving glioma heterogeneity. Ultimately, our study also revealed novel candidate biomarkers that might constitute potential therapeutic targets, marking a significant stride toward personalized and more effective treatment strategies for patients with glioma.CMA - Centro de Matemática e AplicaçõesDM - Departamento de MatemáticaUNIDEMI - Unidade de Investigação e Desenvolvimento em Engenharia Mecânica e IndustrialRUNVieira, Francisca G.Bispo, ReginaLopes, Marta B.2025-02-18T21:19:54Z2024-01-012024-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10362/179276eng1177-9322PURE: 106562666https://doi.org/10.1177/11779322241249563info:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2025-02-24T01:48:55Zoai:run.unl.pt:10362/179276Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T20:40:11.656261Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse |
dc.title.none.fl_str_mv |
Integration of Multi-Omics Data for the Classification of Glioma Types and Identification of Novel Biomarkers |
title |
Integration of Multi-Omics Data for the Classification of Glioma Types and Identification of Novel Biomarkers |
spellingShingle |
Integration of Multi-Omics Data for the Classification of Glioma Types and Identification of Novel Biomarkers Vieira, Francisca G. Canonical correlation analysis classification glioma multi-omics survival analysis Biochemistry Molecular Biology Computer Science Applications Computational Mathematics Applied Mathematics SDG 3 - Good Health and Well-being |
title_short |
Integration of Multi-Omics Data for the Classification of Glioma Types and Identification of Novel Biomarkers |
title_full |
Integration of Multi-Omics Data for the Classification of Glioma Types and Identification of Novel Biomarkers |
title_fullStr |
Integration of Multi-Omics Data for the Classification of Glioma Types and Identification of Novel Biomarkers |
title_full_unstemmed |
Integration of Multi-Omics Data for the Classification of Glioma Types and Identification of Novel Biomarkers |
title_sort |
Integration of Multi-Omics Data for the Classification of Glioma Types and Identification of Novel Biomarkers |
author |
Vieira, Francisca G. |
author_facet |
Vieira, Francisca G. Bispo, Regina Lopes, Marta B. |
author_role |
author |
author2 |
Bispo, Regina Lopes, Marta B. |
author2_role |
author author |
dc.contributor.none.fl_str_mv |
CMA - Centro de Matemática e Aplicações DM - Departamento de Matemática UNIDEMI - Unidade de Investigação e Desenvolvimento em Engenharia Mecânica e Industrial RUN |
dc.contributor.author.fl_str_mv |
Vieira, Francisca G. Bispo, Regina Lopes, Marta B. |
dc.subject.por.fl_str_mv |
Canonical correlation analysis classification glioma multi-omics survival analysis Biochemistry Molecular Biology Computer Science Applications Computational Mathematics Applied Mathematics SDG 3 - Good Health and Well-being |
topic |
Canonical correlation analysis classification glioma multi-omics survival analysis Biochemistry Molecular Biology Computer Science Applications Computational Mathematics Applied Mathematics SDG 3 - Good Health and Well-being |
description |
Publisher Copyright: © The Author(s) 2024. |
publishDate |
2024 |
dc.date.none.fl_str_mv |
2024-01-01 2024-01-01T00:00:00Z 2025-02-18T21:19:54Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10362/179276 |
url |
http://hdl.handle.net/10362/179276 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
1177-9322 PURE: 106562666 https://doi.org/10.1177/11779322241249563 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia instacron:RCAAP |
instname_str |
FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
collection |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository.name.fl_str_mv |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
repository.mail.fl_str_mv |
info@rcaap.pt |
_version_ |
1833598785203208192 |