Priority-Elastic net for binary disease outcome prediction based on multi-omics data
Main Author: | |
---|---|
Publication Date: | 2024 |
Other Authors: | , , , |
Format: | Article |
Language: | eng |
Source: | Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
Download full: | http://hdl.handle.net/10362/178923 |
Summary: | Publisher Copyright: © The Author(s) 2024. |
id |
RCAP_6c139bbdd1543554fd435ef6934bccbf |
---|---|
oai_identifier_str |
oai:run.unl.pt:10362/178923 |
network_acronym_str |
RCAP |
network_name_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository_id_str |
https://opendoar.ac.uk/repository/7160 |
spelling |
Priority-Elastic net for binary disease outcome prediction based on multi-omics dataAdaptive-Elastic netElastic-netHigh-dimensional dataLogistic regressionMulti-omics dataPriority-LassoBiochemistryMolecular BiologyGeneticsComputer Science ApplicationsComputational Theory and MathematicsComputational MathematicsSDG 3 - Good Health and Well-beingPublisher Copyright: © The Author(s) 2024.Background: High-dimensional omics data integration has emerged as a prominent avenue within the healthcare industry, presenting substantial potential to improve predictive models. However, the data integration process faces several challenges, including data heterogeneity, priority sequence in which data blocks are prioritized for rendering predictive information contained in multiple blocks, assessing the flow of information from one omics level to the other and multicollinearity. Methods: We propose the Priority-Elastic net algorithm, a hierarchical regression method extending Priority-Lasso for the binary logistic regression model by incorporating a priority order for blocks of variables while fitting Elastic-net models sequentially for each block. The fitted values from each step are then used as an offset in the subsequent step. Additionally, we considered the adaptive elastic-net penalty within our priority framework to compare the results. Results: The Priority-Elastic net and Priority-Adaptive Elastic net algorithms were evaluated on a brain tumor dataset available from The Cancer Genome Atlas (TCGA), accounting for transcriptomics, proteomics, and clinical information measured over two glioma types: Lower-grade glioma (LGG) and glioblastoma (GBM). Conclusion: Our findings suggest that the Priority-Elastic net is a highly advantageous choice for a wide range of applications. It offers moderate computational complexity, flexibility in integrating prior knowledge while introducing a hierarchical modeling perspective, and, importantly, improved stability and accuracy in predictions, making it superior to the other methods discussed. This evolution marks a significant step forward in predictive modeling, offering a sophisticated tool for navigating the complexities of multi-omics datasets in pursuit of precision medicine’s ultimate goal: personalized treatment optimization based on a comprehensive array of patient-specific data. This framework can be generalized to time-to-event, Cox proportional hazards regression and multicategorical outcomes. A practical implementation of this method is available upon request in R script, complete with an example to facilitate its application.Faculdade de Ciências e Tecnologia (FCT)CMA - Centro de Matemática e AplicaçõesUNIDEMI - Unidade de Investigação e Desenvolvimento em Engenharia Mecânica e IndustrialRUNMusib, LailaColetti, RobertaLopes, Marta B.Mouriño, HelenaCarrasquinha, Eunice2025-02-12T21:19:56Z2024-122024-12-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10362/178923eng1756-0381PURE: 107717659https://doi.org/10.1186/s13040-024-00401-0info:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2025-02-24T01:44:15Zoai:run.unl.pt:10362/178923Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T20:39:37.663506Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse |
dc.title.none.fl_str_mv |
Priority-Elastic net for binary disease outcome prediction based on multi-omics data |
title |
Priority-Elastic net for binary disease outcome prediction based on multi-omics data |
spellingShingle |
Priority-Elastic net for binary disease outcome prediction based on multi-omics data Musib, Laila Adaptive-Elastic net Elastic-net High-dimensional data Logistic regression Multi-omics data Priority-Lasso Biochemistry Molecular Biology Genetics Computer Science Applications Computational Theory and Mathematics Computational Mathematics SDG 3 - Good Health and Well-being |
title_short |
Priority-Elastic net for binary disease outcome prediction based on multi-omics data |
title_full |
Priority-Elastic net for binary disease outcome prediction based on multi-omics data |
title_fullStr |
Priority-Elastic net for binary disease outcome prediction based on multi-omics data |
title_full_unstemmed |
Priority-Elastic net for binary disease outcome prediction based on multi-omics data |
title_sort |
Priority-Elastic net for binary disease outcome prediction based on multi-omics data |
author |
Musib, Laila |
author_facet |
Musib, Laila Coletti, Roberta Lopes, Marta B. Mouriño, Helena Carrasquinha, Eunice |
author_role |
author |
author2 |
Coletti, Roberta Lopes, Marta B. Mouriño, Helena Carrasquinha, Eunice |
author2_role |
author author author author |
dc.contributor.none.fl_str_mv |
Faculdade de Ciências e Tecnologia (FCT) CMA - Centro de Matemática e Aplicações UNIDEMI - Unidade de Investigação e Desenvolvimento em Engenharia Mecânica e Industrial RUN |
dc.contributor.author.fl_str_mv |
Musib, Laila Coletti, Roberta Lopes, Marta B. Mouriño, Helena Carrasquinha, Eunice |
dc.subject.por.fl_str_mv |
Adaptive-Elastic net Elastic-net High-dimensional data Logistic regression Multi-omics data Priority-Lasso Biochemistry Molecular Biology Genetics Computer Science Applications Computational Theory and Mathematics Computational Mathematics SDG 3 - Good Health and Well-being |
topic |
Adaptive-Elastic net Elastic-net High-dimensional data Logistic regression Multi-omics data Priority-Lasso Biochemistry Molecular Biology Genetics Computer Science Applications Computational Theory and Mathematics Computational Mathematics SDG 3 - Good Health and Well-being |
description |
Publisher Copyright: © The Author(s) 2024. |
publishDate |
2024 |
dc.date.none.fl_str_mv |
2024-12 2024-12-01T00:00:00Z 2025-02-12T21:19:56Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10362/178923 |
url |
http://hdl.handle.net/10362/178923 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
1756-0381 PURE: 107717659 https://doi.org/10.1186/s13040-024-00401-0 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia instacron:RCAAP |
instname_str |
FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
collection |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository.name.fl_str_mv |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
repository.mail.fl_str_mv |
info@rcaap.pt |
_version_ |
1833598780402827264 |