Regional enlarged observability of fractional differential equations with Riemann—Liouville time derivatives

Bibliographic Details
Main Author: Zouiten, Hayat
Publication Date: 2018
Other Authors: Boutoulout, Ali, Torres, Delfim F. M.
Format: Article
Language: eng
Source: Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
Download full: http://hdl.handle.net/10773/25097
Summary: We introduce the concept of regional enlarged observability for fractional evolution differential equations involving Riemann-Liouville derivatives. The Hilbert Uniqueness Method (HUM) is used to reconstruct the initial state between two prescribed functions, in an interested subregion of the whole domain, without the knowledge of the state
id RCAP_cfbee7a09313f0c4e074532b96ade54a
oai_identifier_str oai:ria.ua.pt:10773/25097
network_acronym_str RCAP
network_name_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository_id_str https://opendoar.ac.uk/repository/7160
spelling Regional enlarged observability of fractional differential equations with Riemann—Liouville time derivativesEnlarged observabilityFractional evolution systemsHUM approachRegional reconstructionRiemann-Liouville time derivativesWe introduce the concept of regional enlarged observability for fractional evolution differential equations involving Riemann-Liouville derivatives. The Hilbert Uniqueness Method (HUM) is used to reconstruct the initial state between two prescribed functions, in an interested subregion of the whole domain, without the knowledge of the stateMDPI2019-01-14T14:49:06Z2018-12-01T00:00:00Z2018-12-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10773/25097eng2075-168010.3390/axioms7040092Zouiten, HayatBoutoulout, AliTorres, Delfim F. M.info:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2024-05-06T04:18:15Zoai:ria.ua.pt:10773/25097Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T14:03:57.263953Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse
dc.title.none.fl_str_mv Regional enlarged observability of fractional differential equations with Riemann—Liouville time derivatives
title Regional enlarged observability of fractional differential equations with Riemann—Liouville time derivatives
spellingShingle Regional enlarged observability of fractional differential equations with Riemann—Liouville time derivatives
Zouiten, Hayat
Enlarged observability
Fractional evolution systems
HUM approach
Regional reconstruction
Riemann-Liouville time derivatives
title_short Regional enlarged observability of fractional differential equations with Riemann—Liouville time derivatives
title_full Regional enlarged observability of fractional differential equations with Riemann—Liouville time derivatives
title_fullStr Regional enlarged observability of fractional differential equations with Riemann—Liouville time derivatives
title_full_unstemmed Regional enlarged observability of fractional differential equations with Riemann—Liouville time derivatives
title_sort Regional enlarged observability of fractional differential equations with Riemann—Liouville time derivatives
author Zouiten, Hayat
author_facet Zouiten, Hayat
Boutoulout, Ali
Torres, Delfim F. M.
author_role author
author2 Boutoulout, Ali
Torres, Delfim F. M.
author2_role author
author
dc.contributor.author.fl_str_mv Zouiten, Hayat
Boutoulout, Ali
Torres, Delfim F. M.
dc.subject.por.fl_str_mv Enlarged observability
Fractional evolution systems
HUM approach
Regional reconstruction
Riemann-Liouville time derivatives
topic Enlarged observability
Fractional evolution systems
HUM approach
Regional reconstruction
Riemann-Liouville time derivatives
description We introduce the concept of regional enlarged observability for fractional evolution differential equations involving Riemann-Liouville derivatives. The Hilbert Uniqueness Method (HUM) is used to reconstruct the initial state between two prescribed functions, in an interested subregion of the whole domain, without the knowledge of the state
publishDate 2018
dc.date.none.fl_str_mv 2018-12-01T00:00:00Z
2018-12-01
2019-01-14T14:49:06Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10773/25097
url http://hdl.handle.net/10773/25097
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 2075-1680
10.3390/axioms7040092
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv MDPI
publisher.none.fl_str_mv MDPI
dc.source.none.fl_str_mv reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron:RCAAP
instname_str FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron_str RCAAP
institution RCAAP
reponame_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
collection Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository.name.fl_str_mv Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
repository.mail.fl_str_mv info@rcaap.pt
_version_ 1833594256080502784