Application of the fractional Sturm–Liouville theory to a fractional Sturm–Liouville telegraph equation
| Main Author: | |
|---|---|
| Publication Date: | 2021 |
| Other Authors: | , |
| Format: | Article |
| Language: | eng |
| Source: | Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| Download full: | http://hdl.handle.net/10773/31472 |
Summary: | In this paper, we consider a non-homogeneous time-space-fractional telegraph equation in $n$-dimensions, which is obtained from the standard telegraph equation by replacing the first- and second-order time derivatives by Caputo fractional derivatives of corresponding fractional orders, and the Laplacian operator by a fractional Sturm-Liouville operator defined in terms of right and left fractional Riemann-Liouville derivatives. Using the method of separation of variables, we derive series representations of the solution in terms of Wright functions, for the homogeneous and non-homogeneous cases. The convergence of the series solutions is studied by using well known properties of the Wright function. We show also that our series can be written using the bivariate Mittag-Leffler function. In the end of the paper some illustrative examples are presented. |
| id |
RCAP_65f945f249f529668b66dd87dcefc2f9 |
|---|---|
| oai_identifier_str |
oai:ria.ua.pt:10773/31472 |
| network_acronym_str |
RCAP |
| network_name_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| repository_id_str |
https://opendoar.ac.uk/repository/7160 |
| spelling |
Application of the fractional Sturm–Liouville theory to a fractional Sturm–Liouville telegraph equationCaputo fractional derivativesRiemann-Liouville fractional derivativesFractional Sturm-Liouville operatorTime-space-fractional telegraph equationMittag-Leffler functionsWright functionsIn this paper, we consider a non-homogeneous time-space-fractional telegraph equation in $n$-dimensions, which is obtained from the standard telegraph equation by replacing the first- and second-order time derivatives by Caputo fractional derivatives of corresponding fractional orders, and the Laplacian operator by a fractional Sturm-Liouville operator defined in terms of right and left fractional Riemann-Liouville derivatives. Using the method of separation of variables, we derive series representations of the solution in terms of Wright functions, for the homogeneous and non-homogeneous cases. The convergence of the series solutions is studied by using well known properties of the Wright function. We show also that our series can be written using the bivariate Mittag-Leffler function. In the end of the paper some illustrative examples are presented.Springer2021-072021-07-01T00:00:00Z2022-06-10T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10773/31472eng1661-825410.1007/s11785-021-01125-3Ferreira, M.Rodrigues, M. M.Vieira, N.info:eu-repo/semantics/embargoedAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2024-05-06T04:32:07Zoai:ria.ua.pt:10773/31472Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T14:11:41.663146Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse |
| dc.title.none.fl_str_mv |
Application of the fractional Sturm–Liouville theory to a fractional Sturm–Liouville telegraph equation |
| title |
Application of the fractional Sturm–Liouville theory to a fractional Sturm–Liouville telegraph equation |
| spellingShingle |
Application of the fractional Sturm–Liouville theory to a fractional Sturm–Liouville telegraph equation Ferreira, M. Caputo fractional derivatives Riemann-Liouville fractional derivatives Fractional Sturm-Liouville operator Time-space-fractional telegraph equation Mittag-Leffler functions Wright functions |
| title_short |
Application of the fractional Sturm–Liouville theory to a fractional Sturm–Liouville telegraph equation |
| title_full |
Application of the fractional Sturm–Liouville theory to a fractional Sturm–Liouville telegraph equation |
| title_fullStr |
Application of the fractional Sturm–Liouville theory to a fractional Sturm–Liouville telegraph equation |
| title_full_unstemmed |
Application of the fractional Sturm–Liouville theory to a fractional Sturm–Liouville telegraph equation |
| title_sort |
Application of the fractional Sturm–Liouville theory to a fractional Sturm–Liouville telegraph equation |
| author |
Ferreira, M. |
| author_facet |
Ferreira, M. Rodrigues, M. M. Vieira, N. |
| author_role |
author |
| author2 |
Rodrigues, M. M. Vieira, N. |
| author2_role |
author author |
| dc.contributor.author.fl_str_mv |
Ferreira, M. Rodrigues, M. M. Vieira, N. |
| dc.subject.por.fl_str_mv |
Caputo fractional derivatives Riemann-Liouville fractional derivatives Fractional Sturm-Liouville operator Time-space-fractional telegraph equation Mittag-Leffler functions Wright functions |
| topic |
Caputo fractional derivatives Riemann-Liouville fractional derivatives Fractional Sturm-Liouville operator Time-space-fractional telegraph equation Mittag-Leffler functions Wright functions |
| description |
In this paper, we consider a non-homogeneous time-space-fractional telegraph equation in $n$-dimensions, which is obtained from the standard telegraph equation by replacing the first- and second-order time derivatives by Caputo fractional derivatives of corresponding fractional orders, and the Laplacian operator by a fractional Sturm-Liouville operator defined in terms of right and left fractional Riemann-Liouville derivatives. Using the method of separation of variables, we derive series representations of the solution in terms of Wright functions, for the homogeneous and non-homogeneous cases. The convergence of the series solutions is studied by using well known properties of the Wright function. We show also that our series can be written using the bivariate Mittag-Leffler function. In the end of the paper some illustrative examples are presented. |
| publishDate |
2021 |
| dc.date.none.fl_str_mv |
2021-07 2021-07-01T00:00:00Z 2022-06-10T00:00:00Z |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10773/31472 |
| url |
http://hdl.handle.net/10773/31472 |
| dc.language.iso.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
1661-8254 10.1007/s11785-021-01125-3 |
| dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/embargoedAccess |
| eu_rights_str_mv |
embargoedAccess |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.publisher.none.fl_str_mv |
Springer |
| publisher.none.fl_str_mv |
Springer |
| dc.source.none.fl_str_mv |
reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia instacron:RCAAP |
| instname_str |
FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
| instacron_str |
RCAAP |
| institution |
RCAAP |
| reponame_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| collection |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| repository.name.fl_str_mv |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
| repository.mail.fl_str_mv |
info@rcaap.pt |
| _version_ |
1833594386463588352 |