Denoising using local projective subspace methods

Bibliographic Details
Main Author: Gruber, P.
Publication Date: 2006
Other Authors: Stadlthanner, K., Böhm, M., Theis, F.J., Lang, E.W., Tomé, A.M., Teixeira, Ana, Puntonet, C.G., Gorriz Saéz, J.M.
Format: Article
Language: eng
Source: Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
Download full: http://hdl.handle.net/10400.26/47371
Summary: In this paper we present denoising algorithms for enhancing noisy signals based on Local ICA (LICA), Delayed AMUSE (dAMUSE) and Kernel PCA (KPCA). The algorithm LICA relies on applying ICA locally to clusters of signals embedded in a high-dimensional feature space of delayed coordinates. The components resembling the signals can be detected by various criteria like estimators of kurtosis or the variance of autocorrelations depending on the statistical nature of the signal. The algorithm proposed can be applied favorably to the problem of denoising multi-dimensional data. Another projective subspace denoising method using delayed coordinates has been proposed recently with the algorithm dAMUSE. It combines the solution of blind source separation problems with denoising efforts in an elegant way and proofs to be very efficient and fast. Finally, KPCA represents a non-linear projective subspace method that is well suited for denoising also. Besides illustrative applications to toy examples and images, we provide an application of all algorithms considered to the analysis of protein NMR spectra.
id RCAP_cf2d1d9d952686db2f12425a32554887
oai_identifier_str oai:comum.rcaap.pt:10400.26/47371
network_acronym_str RCAP
network_name_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository_id_str https://opendoar.ac.uk/repository/7160
spelling Denoising using local projective subspace methodsLocal ICADelayed AMUSEProjective subspace denoising embeddingIn this paper we present denoising algorithms for enhancing noisy signals based on Local ICA (LICA), Delayed AMUSE (dAMUSE) and Kernel PCA (KPCA). The algorithm LICA relies on applying ICA locally to clusters of signals embedded in a high-dimensional feature space of delayed coordinates. The components resembling the signals can be detected by various criteria like estimators of kurtosis or the variance of autocorrelations depending on the statistical nature of the signal. The algorithm proposed can be applied favorably to the problem of denoising multi-dimensional data. Another projective subspace denoising method using delayed coordinates has been proposed recently with the algorithm dAMUSE. It combines the solution of blind source separation problems with denoising efforts in an elegant way and proofs to be very efficient and fast. Finally, KPCA represents a non-linear projective subspace method that is well suited for denoising also. Besides illustrative applications to toy examples and images, we provide an application of all algorithms considered to the analysis of protein NMR spectra.ElsevierRepositório ComumGruber, P.Stadlthanner, K.Böhm, M.Theis, F.J.Lang, E.W.Tomé, A.M.Teixeira, AnaPuntonet, C.G.Gorriz Saéz, J.M.2023-10-20T12:22:40Z20062006-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10400.26/47371eng10.1016/j.neucom.2005.12.025info:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2025-05-02T11:25:51Zoai:comum.rcaap.pt:10400.26/47371Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-29T06:46:13.052471Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse
dc.title.none.fl_str_mv Denoising using local projective subspace methods
title Denoising using local projective subspace methods
spellingShingle Denoising using local projective subspace methods
Gruber, P.
Local ICA
Delayed AMUSE
Projective subspace denoising embedding
title_short Denoising using local projective subspace methods
title_full Denoising using local projective subspace methods
title_fullStr Denoising using local projective subspace methods
title_full_unstemmed Denoising using local projective subspace methods
title_sort Denoising using local projective subspace methods
author Gruber, P.
author_facet Gruber, P.
Stadlthanner, K.
Böhm, M.
Theis, F.J.
Lang, E.W.
Tomé, A.M.
Teixeira, Ana
Puntonet, C.G.
Gorriz Saéz, J.M.
author_role author
author2 Stadlthanner, K.
Böhm, M.
Theis, F.J.
Lang, E.W.
Tomé, A.M.
Teixeira, Ana
Puntonet, C.G.
Gorriz Saéz, J.M.
author2_role author
author
author
author
author
author
author
author
dc.contributor.none.fl_str_mv Repositório Comum
dc.contributor.author.fl_str_mv Gruber, P.
Stadlthanner, K.
Böhm, M.
Theis, F.J.
Lang, E.W.
Tomé, A.M.
Teixeira, Ana
Puntonet, C.G.
Gorriz Saéz, J.M.
dc.subject.por.fl_str_mv Local ICA
Delayed AMUSE
Projective subspace denoising embedding
topic Local ICA
Delayed AMUSE
Projective subspace denoising embedding
description In this paper we present denoising algorithms for enhancing noisy signals based on Local ICA (LICA), Delayed AMUSE (dAMUSE) and Kernel PCA (KPCA). The algorithm LICA relies on applying ICA locally to clusters of signals embedded in a high-dimensional feature space of delayed coordinates. The components resembling the signals can be detected by various criteria like estimators of kurtosis or the variance of autocorrelations depending on the statistical nature of the signal. The algorithm proposed can be applied favorably to the problem of denoising multi-dimensional data. Another projective subspace denoising method using delayed coordinates has been proposed recently with the algorithm dAMUSE. It combines the solution of blind source separation problems with denoising efforts in an elegant way and proofs to be very efficient and fast. Finally, KPCA represents a non-linear projective subspace method that is well suited for denoising also. Besides illustrative applications to toy examples and images, we provide an application of all algorithms considered to the analysis of protein NMR spectra.
publishDate 2006
dc.date.none.fl_str_mv 2006
2006-01-01T00:00:00Z
2023-10-20T12:22:40Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10400.26/47371
url http://hdl.handle.net/10400.26/47371
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 10.1016/j.neucom.2005.12.025
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Elsevier
publisher.none.fl_str_mv Elsevier
dc.source.none.fl_str_mv reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron:RCAAP
instname_str FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron_str RCAAP
institution RCAAP
reponame_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
collection Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository.name.fl_str_mv Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
repository.mail.fl_str_mv info@rcaap.pt
_version_ 1833602779229192192