Single-channel electroencephalogram analysis using non-linear subspace techniques
Main Author: | |
---|---|
Publication Date: | 2007 |
Other Authors: | , , , , |
Language: | eng |
Source: | Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
Download full: | http://hdl.handle.net/10400.26/47394 |
Summary: | In this work, we propose the correction of univariate, single channel EEGs using projective subspace techniques. The biomedical signals which often represent one dimensional time series, need to be transformed to multi-dimensional signal vectors for the latter techniques to be applicable. The transformation can be achieved by embedding an observed signal in its delayed coordinates. We propose the application of two non-linear subspace techniques to the obtained multidimensional signal. One of the techniques consists in a modified version of Singular Spectrum Analysis (SSA) and the other is kernel Principal Component Analysis (KPCA) implemented using a reduced rank approximation of the kernel matrix. Both nonlinear subspace projection techniques are applied to an electroencephalogram (EEG) signal recorded in the frontal channel to extract its prominent electrooculogram (EOG) interference. |
id |
RCAP_99d84ffd2c468b8f1543ce8f8fcec77d |
---|---|
oai_identifier_str |
oai:comum.rcaap.pt:10400.26/47394 |
network_acronym_str |
RCAP |
network_name_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository_id_str |
https://opendoar.ac.uk/repository/7160 |
spelling |
Single-channel electroencephalogram analysis using non-linear subspace techniquesSubspace Techniqueslocal SSAKPCAEOGsEEGRemoving ArtifactsIn this work, we propose the correction of univariate, single channel EEGs using projective subspace techniques. The biomedical signals which often represent one dimensional time series, need to be transformed to multi-dimensional signal vectors for the latter techniques to be applicable. The transformation can be achieved by embedding an observed signal in its delayed coordinates. We propose the application of two non-linear subspace techniques to the obtained multidimensional signal. One of the techniques consists in a modified version of Singular Spectrum Analysis (SSA) and the other is kernel Principal Component Analysis (KPCA) implemented using a reduced rank approximation of the kernel matrix. Both nonlinear subspace projection techniques are applied to an electroencephalogram (EEG) signal recorded in the frontal channel to extract its prominent electrooculogram (EOG) interference.IEEERepositório ComumTeixeira, A.R.Alves, N.Tome, A.M.Bohm, M.Lang, E.W.Puntonet, C.G.2023-10-23T10:46:01Z20072007-01-01T00:00:00Zconference objectinfo:eu-repo/semantics/publishedVersionapplication/pdfhttp://hdl.handle.net/10400.26/47394eng10.1109/WISP.2007.4447577info:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2025-05-02T11:24:55Zoai:comum.rcaap.pt:10400.26/47394Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-29T06:45:08.726284Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse |
dc.title.none.fl_str_mv |
Single-channel electroencephalogram analysis using non-linear subspace techniques |
title |
Single-channel electroencephalogram analysis using non-linear subspace techniques |
spellingShingle |
Single-channel electroencephalogram analysis using non-linear subspace techniques Teixeira, A.R. Subspace Techniques local SSA KPCA EOGs EEG Removing Artifacts |
title_short |
Single-channel electroencephalogram analysis using non-linear subspace techniques |
title_full |
Single-channel electroencephalogram analysis using non-linear subspace techniques |
title_fullStr |
Single-channel electroencephalogram analysis using non-linear subspace techniques |
title_full_unstemmed |
Single-channel electroencephalogram analysis using non-linear subspace techniques |
title_sort |
Single-channel electroencephalogram analysis using non-linear subspace techniques |
author |
Teixeira, A.R. |
author_facet |
Teixeira, A.R. Alves, N. Tome, A.M. Bohm, M. Lang, E.W. Puntonet, C.G. |
author_role |
author |
author2 |
Alves, N. Tome, A.M. Bohm, M. Lang, E.W. Puntonet, C.G. |
author2_role |
author author author author author |
dc.contributor.none.fl_str_mv |
Repositório Comum |
dc.contributor.author.fl_str_mv |
Teixeira, A.R. Alves, N. Tome, A.M. Bohm, M. Lang, E.W. Puntonet, C.G. |
dc.subject.por.fl_str_mv |
Subspace Techniques local SSA KPCA EOGs EEG Removing Artifacts |
topic |
Subspace Techniques local SSA KPCA EOGs EEG Removing Artifacts |
description |
In this work, we propose the correction of univariate, single channel EEGs using projective subspace techniques. The biomedical signals which often represent one dimensional time series, need to be transformed to multi-dimensional signal vectors for the latter techniques to be applicable. The transformation can be achieved by embedding an observed signal in its delayed coordinates. We propose the application of two non-linear subspace techniques to the obtained multidimensional signal. One of the techniques consists in a modified version of Singular Spectrum Analysis (SSA) and the other is kernel Principal Component Analysis (KPCA) implemented using a reduced rank approximation of the kernel matrix. Both nonlinear subspace projection techniques are applied to an electroencephalogram (EEG) signal recorded in the frontal channel to extract its prominent electrooculogram (EOG) interference. |
publishDate |
2007 |
dc.date.none.fl_str_mv |
2007 2007-01-01T00:00:00Z 2023-10-23T10:46:01Z |
dc.type.driver.fl_str_mv |
conference object |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10400.26/47394 |
url |
http://hdl.handle.net/10400.26/47394 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
10.1109/WISP.2007.4447577 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
IEEE |
publisher.none.fl_str_mv |
IEEE |
dc.source.none.fl_str_mv |
reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia instacron:RCAAP |
instname_str |
FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
collection |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository.name.fl_str_mv |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
repository.mail.fl_str_mv |
info@rcaap.pt |
_version_ |
1833602773034205184 |