The importance of sampling for the efficiency of artificial neural networks in digital soil modelling

Bibliographic Details
Main Author: Freire, Sérgio
Publication Date: 2012
Other Authors: Fonseca, Inês, Brasil, Ricardo, Rocha, Jorge, Tenedório, José António
Language: eng
Source: Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
Download full: http://hdl.handle.net/10451/57931
Summary: In Portugal, soil mapping remains incomplete, and there are also significant problems with the existing cartography. Digital Soil Mapping uses advanced computerbased techniques such as Artificial Neural Networks (ANN) for mapping soil classes in a cheaper, more consistent and flexible way, using surrogate landscape data. This work used five different training sets to evaluate the impact that sampling has on the predictive accuracy of ANNs. The testes were carried out in IDRISI Taiga for two catchments in northern Portugal, using an ANN method known as multi-layer perceptron. Results show that sampling design is very important for the accuracy of soil mapping with ANNs.
id RCAP_ce7e03eb97ab5a1b68eef03c3e4413ec
oai_identifier_str oai:repositorio.ulisboa.pt:10451/57931
network_acronym_str RCAP
network_name_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository_id_str https://opendoar.ac.uk/repository/7160
spelling The importance of sampling for the efficiency of artificial neural networks in digital soil modellingDigital soil mappingAutoMAPticSIDRISI TaigaMondim de BastoVila RealIn Portugal, soil mapping remains incomplete, and there are also significant problems with the existing cartography. Digital Soil Mapping uses advanced computerbased techniques such as Artificial Neural Networks (ANN) for mapping soil classes in a cheaper, more consistent and flexible way, using surrogate landscape data. This work used five different training sets to evaluate the impact that sampling has on the predictive accuracy of ANNs. The testes were carried out in IDRISI Taiga for two catchments in northern Portugal, using an ANN method known as multi-layer perceptron. Results show that sampling design is very important for the accuracy of soil mapping with ANNs.MeubookRepositório da Universidade de LisboaFreire, SérgioFonseca, InêsBrasil, RicardoRocha, JorgeTenedório, José António2023-06-04T17:43:17Z20122012-01-01T00:00:00Zbook partinfo:eu-repo/semantics/publishedVersionapplication/pdfhttp://hdl.handle.net/10451/57931engFreire, S., Fonseca, I.L., Brasil, R., Rocha, J., & Tenedório, J.A. (2012). The importance of sampling for the efficiency of artificial neural networks in digital soil modelling, In. D. Royé, J. A. Aldrey Vázquez, M. Pazoz Otón, M. J. Piñeira Mantiñán & M. Valcárcel Díaz (Eds), Actas de el XIII Coloquio Ibérico da Geografía, Respuestas de la Geografía Ibérica a la crisis actual, (pp. 867-876), Meubook. ISBN 978-84-940469-7-1.978-84-940469-7-1info:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2025-03-17T14:58:11Zoai:repositorio.ulisboa.pt:10451/57931Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-29T03:30:31.570860Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse
dc.title.none.fl_str_mv The importance of sampling for the efficiency of artificial neural networks in digital soil modelling
title The importance of sampling for the efficiency of artificial neural networks in digital soil modelling
spellingShingle The importance of sampling for the efficiency of artificial neural networks in digital soil modelling
Freire, Sérgio
Digital soil mapping
AutoMAPticS
IDRISI Taiga
Mondim de Basto
Vila Real
title_short The importance of sampling for the efficiency of artificial neural networks in digital soil modelling
title_full The importance of sampling for the efficiency of artificial neural networks in digital soil modelling
title_fullStr The importance of sampling for the efficiency of artificial neural networks in digital soil modelling
title_full_unstemmed The importance of sampling for the efficiency of artificial neural networks in digital soil modelling
title_sort The importance of sampling for the efficiency of artificial neural networks in digital soil modelling
author Freire, Sérgio
author_facet Freire, Sérgio
Fonseca, Inês
Brasil, Ricardo
Rocha, Jorge
Tenedório, José António
author_role author
author2 Fonseca, Inês
Brasil, Ricardo
Rocha, Jorge
Tenedório, José António
author2_role author
author
author
author
dc.contributor.none.fl_str_mv Repositório da Universidade de Lisboa
dc.contributor.author.fl_str_mv Freire, Sérgio
Fonseca, Inês
Brasil, Ricardo
Rocha, Jorge
Tenedório, José António
dc.subject.por.fl_str_mv Digital soil mapping
AutoMAPticS
IDRISI Taiga
Mondim de Basto
Vila Real
topic Digital soil mapping
AutoMAPticS
IDRISI Taiga
Mondim de Basto
Vila Real
description In Portugal, soil mapping remains incomplete, and there are also significant problems with the existing cartography. Digital Soil Mapping uses advanced computerbased techniques such as Artificial Neural Networks (ANN) for mapping soil classes in a cheaper, more consistent and flexible way, using surrogate landscape data. This work used five different training sets to evaluate the impact that sampling has on the predictive accuracy of ANNs. The testes were carried out in IDRISI Taiga for two catchments in northern Portugal, using an ANN method known as multi-layer perceptron. Results show that sampling design is very important for the accuracy of soil mapping with ANNs.
publishDate 2012
dc.date.none.fl_str_mv 2012
2012-01-01T00:00:00Z
2023-06-04T17:43:17Z
dc.type.driver.fl_str_mv book part
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10451/57931
url http://hdl.handle.net/10451/57931
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Freire, S., Fonseca, I.L., Brasil, R., Rocha, J., & Tenedório, J.A. (2012). The importance of sampling for the efficiency of artificial neural networks in digital soil modelling, In. D. Royé, J. A. Aldrey Vázquez, M. Pazoz Otón, M. J. Piñeira Mantiñán & M. Valcárcel Díaz (Eds), Actas de el XIII Coloquio Ibérico da Geografía, Respuestas de la Geografía Ibérica a la crisis actual, (pp. 867-876), Meubook. ISBN 978-84-940469-7-1.
978-84-940469-7-1
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Meubook
publisher.none.fl_str_mv Meubook
dc.source.none.fl_str_mv reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron:RCAAP
instname_str FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron_str RCAAP
institution RCAAP
reponame_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
collection Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository.name.fl_str_mv Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
repository.mail.fl_str_mv info@rcaap.pt
_version_ 1833601724049260544