The importance of sampling for the efficiency of artificial neural networks in digital soil modelling
Main Author: | |
---|---|
Publication Date: | 2012 |
Other Authors: | , , , |
Language: | eng |
Source: | Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
Download full: | http://hdl.handle.net/10451/57931 |
Summary: | In Portugal, soil mapping remains incomplete, and there are also significant problems with the existing cartography. Digital Soil Mapping uses advanced computerbased techniques such as Artificial Neural Networks (ANN) for mapping soil classes in a cheaper, more consistent and flexible way, using surrogate landscape data. This work used five different training sets to evaluate the impact that sampling has on the predictive accuracy of ANNs. The testes were carried out in IDRISI Taiga for two catchments in northern Portugal, using an ANN method known as multi-layer perceptron. Results show that sampling design is very important for the accuracy of soil mapping with ANNs. |
id |
RCAP_ce7e03eb97ab5a1b68eef03c3e4413ec |
---|---|
oai_identifier_str |
oai:repositorio.ulisboa.pt:10451/57931 |
network_acronym_str |
RCAP |
network_name_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository_id_str |
https://opendoar.ac.uk/repository/7160 |
spelling |
The importance of sampling for the efficiency of artificial neural networks in digital soil modellingDigital soil mappingAutoMAPticSIDRISI TaigaMondim de BastoVila RealIn Portugal, soil mapping remains incomplete, and there are also significant problems with the existing cartography. Digital Soil Mapping uses advanced computerbased techniques such as Artificial Neural Networks (ANN) for mapping soil classes in a cheaper, more consistent and flexible way, using surrogate landscape data. This work used five different training sets to evaluate the impact that sampling has on the predictive accuracy of ANNs. The testes were carried out in IDRISI Taiga for two catchments in northern Portugal, using an ANN method known as multi-layer perceptron. Results show that sampling design is very important for the accuracy of soil mapping with ANNs.MeubookRepositório da Universidade de LisboaFreire, SérgioFonseca, InêsBrasil, RicardoRocha, JorgeTenedório, José António2023-06-04T17:43:17Z20122012-01-01T00:00:00Zbook partinfo:eu-repo/semantics/publishedVersionapplication/pdfhttp://hdl.handle.net/10451/57931engFreire, S., Fonseca, I.L., Brasil, R., Rocha, J., & Tenedório, J.A. (2012). The importance of sampling for the efficiency of artificial neural networks in digital soil modelling, In. D. Royé, J. A. Aldrey Vázquez, M. Pazoz Otón, M. J. Piñeira Mantiñán & M. Valcárcel Díaz (Eds), Actas de el XIII Coloquio Ibérico da Geografía, Respuestas de la Geografía Ibérica a la crisis actual, (pp. 867-876), Meubook. ISBN 978-84-940469-7-1.978-84-940469-7-1info:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2025-03-17T14:58:11Zoai:repositorio.ulisboa.pt:10451/57931Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-29T03:30:31.570860Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse |
dc.title.none.fl_str_mv |
The importance of sampling for the efficiency of artificial neural networks in digital soil modelling |
title |
The importance of sampling for the efficiency of artificial neural networks in digital soil modelling |
spellingShingle |
The importance of sampling for the efficiency of artificial neural networks in digital soil modelling Freire, Sérgio Digital soil mapping AutoMAPticS IDRISI Taiga Mondim de Basto Vila Real |
title_short |
The importance of sampling for the efficiency of artificial neural networks in digital soil modelling |
title_full |
The importance of sampling for the efficiency of artificial neural networks in digital soil modelling |
title_fullStr |
The importance of sampling for the efficiency of artificial neural networks in digital soil modelling |
title_full_unstemmed |
The importance of sampling for the efficiency of artificial neural networks in digital soil modelling |
title_sort |
The importance of sampling for the efficiency of artificial neural networks in digital soil modelling |
author |
Freire, Sérgio |
author_facet |
Freire, Sérgio Fonseca, Inês Brasil, Ricardo Rocha, Jorge Tenedório, José António |
author_role |
author |
author2 |
Fonseca, Inês Brasil, Ricardo Rocha, Jorge Tenedório, José António |
author2_role |
author author author author |
dc.contributor.none.fl_str_mv |
Repositório da Universidade de Lisboa |
dc.contributor.author.fl_str_mv |
Freire, Sérgio Fonseca, Inês Brasil, Ricardo Rocha, Jorge Tenedório, José António |
dc.subject.por.fl_str_mv |
Digital soil mapping AutoMAPticS IDRISI Taiga Mondim de Basto Vila Real |
topic |
Digital soil mapping AutoMAPticS IDRISI Taiga Mondim de Basto Vila Real |
description |
In Portugal, soil mapping remains incomplete, and there are also significant problems with the existing cartography. Digital Soil Mapping uses advanced computerbased techniques such as Artificial Neural Networks (ANN) for mapping soil classes in a cheaper, more consistent and flexible way, using surrogate landscape data. This work used five different training sets to evaluate the impact that sampling has on the predictive accuracy of ANNs. The testes were carried out in IDRISI Taiga for two catchments in northern Portugal, using an ANN method known as multi-layer perceptron. Results show that sampling design is very important for the accuracy of soil mapping with ANNs. |
publishDate |
2012 |
dc.date.none.fl_str_mv |
2012 2012-01-01T00:00:00Z 2023-06-04T17:43:17Z |
dc.type.driver.fl_str_mv |
book part |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10451/57931 |
url |
http://hdl.handle.net/10451/57931 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Freire, S., Fonseca, I.L., Brasil, R., Rocha, J., & Tenedório, J.A. (2012). The importance of sampling for the efficiency of artificial neural networks in digital soil modelling, In. D. Royé, J. A. Aldrey Vázquez, M. Pazoz Otón, M. J. Piñeira Mantiñán & M. Valcárcel Díaz (Eds), Actas de el XIII Coloquio Ibérico da Geografía, Respuestas de la Geografía Ibérica a la crisis actual, (pp. 867-876), Meubook. ISBN 978-84-940469-7-1. 978-84-940469-7-1 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Meubook |
publisher.none.fl_str_mv |
Meubook |
dc.source.none.fl_str_mv |
reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia instacron:RCAAP |
instname_str |
FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
collection |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository.name.fl_str_mv |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
repository.mail.fl_str_mv |
info@rcaap.pt |
_version_ |
1833601724049260544 |