Fundamental solutions of the time fractional diffusion-wave and parabolic Dirac operators
Main Author: | |
---|---|
Publication Date: | 2017 |
Other Authors: | |
Format: | Article |
Language: | eng |
Source: | Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
Download full: | http://hdl.handle.net/10773/16282 |
Summary: | In this paper we study the multidimensional time fractional diffusion-wave equation where the time fractional derivative is in the Caputo sense with order $\beta \in ]0,2].$ Applying operational techniques via Fourier and Mellin transforms we obtain an integral representation of the fundamental solution (FS) of the time fractional diffusion-wave operator. Series representations of the FS are explicitly obtained for any dimension. From these we derive the FS for the time fractional parabolic Dirac operator in the form of integral and series representation. Fractional moments of arbitrary order $\gamma>0$ are also computed. To illustrate our results we present and discuss some plots of the FS for some particular values of the dimension and of the fractional parameter. |
id |
RCAP_ccad97d4f681eb039f9b68f59449e64f |
---|---|
oai_identifier_str |
oai:ria.ua.pt:10773/16282 |
network_acronym_str |
RCAP |
network_name_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository_id_str |
https://opendoar.ac.uk/repository/7160 |
spelling |
Fundamental solutions of the time fractional diffusion-wave and parabolic Dirac operatorsFractional Laplace operatorRiemann-Liouville fractional derivativesEigenfunctionsMittag-Leffler functionTime fractional diffusion-wave operatorTime fractional parabolic Dirac operatorFundamental solutionsCaputo fractional derivativeFractional momentsIn this paper we study the multidimensional time fractional diffusion-wave equation where the time fractional derivative is in the Caputo sense with order $\beta \in ]0,2].$ Applying operational techniques via Fourier and Mellin transforms we obtain an integral representation of the fundamental solution (FS) of the time fractional diffusion-wave operator. Series representations of the FS are explicitly obtained for any dimension. From these we derive the FS for the time fractional parabolic Dirac operator in the form of integral and series representation. Fractional moments of arbitrary order $\gamma>0$ are also computed. To illustrate our results we present and discuss some plots of the FS for some particular values of the dimension and of the fractional parameter.Elsevier2017-03-012017-03-01T00:00:00Z2019-02-23T15:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10773/16282eng0022-247X10.1016/j.jmaa.2016.08.052Ferreira, Milton dos SantosVieira, Nelson Felipe Loureiroinfo:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2024-05-06T03:58:08Zoai:ria.ua.pt:10773/16282Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T13:52:42.605165Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse |
dc.title.none.fl_str_mv |
Fundamental solutions of the time fractional diffusion-wave and parabolic Dirac operators |
title |
Fundamental solutions of the time fractional diffusion-wave and parabolic Dirac operators |
spellingShingle |
Fundamental solutions of the time fractional diffusion-wave and parabolic Dirac operators Ferreira, Milton dos Santos Fractional Laplace operator Riemann-Liouville fractional derivatives Eigenfunctions Mittag-Leffler function Time fractional diffusion-wave operator Time fractional parabolic Dirac operator Fundamental solutions Caputo fractional derivative Fractional moments |
title_short |
Fundamental solutions of the time fractional diffusion-wave and parabolic Dirac operators |
title_full |
Fundamental solutions of the time fractional diffusion-wave and parabolic Dirac operators |
title_fullStr |
Fundamental solutions of the time fractional diffusion-wave and parabolic Dirac operators |
title_full_unstemmed |
Fundamental solutions of the time fractional diffusion-wave and parabolic Dirac operators |
title_sort |
Fundamental solutions of the time fractional diffusion-wave and parabolic Dirac operators |
author |
Ferreira, Milton dos Santos |
author_facet |
Ferreira, Milton dos Santos Vieira, Nelson Felipe Loureiro |
author_role |
author |
author2 |
Vieira, Nelson Felipe Loureiro |
author2_role |
author |
dc.contributor.author.fl_str_mv |
Ferreira, Milton dos Santos Vieira, Nelson Felipe Loureiro |
dc.subject.por.fl_str_mv |
Fractional Laplace operator Riemann-Liouville fractional derivatives Eigenfunctions Mittag-Leffler function Time fractional diffusion-wave operator Time fractional parabolic Dirac operator Fundamental solutions Caputo fractional derivative Fractional moments |
topic |
Fractional Laplace operator Riemann-Liouville fractional derivatives Eigenfunctions Mittag-Leffler function Time fractional diffusion-wave operator Time fractional parabolic Dirac operator Fundamental solutions Caputo fractional derivative Fractional moments |
description |
In this paper we study the multidimensional time fractional diffusion-wave equation where the time fractional derivative is in the Caputo sense with order $\beta \in ]0,2].$ Applying operational techniques via Fourier and Mellin transforms we obtain an integral representation of the fundamental solution (FS) of the time fractional diffusion-wave operator. Series representations of the FS are explicitly obtained for any dimension. From these we derive the FS for the time fractional parabolic Dirac operator in the form of integral and series representation. Fractional moments of arbitrary order $\gamma>0$ are also computed. To illustrate our results we present and discuss some plots of the FS for some particular values of the dimension and of the fractional parameter. |
publishDate |
2017 |
dc.date.none.fl_str_mv |
2017-03-01 2017-03-01T00:00:00Z 2019-02-23T15:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10773/16282 |
url |
http://hdl.handle.net/10773/16282 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
0022-247X 10.1016/j.jmaa.2016.08.052 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier |
publisher.none.fl_str_mv |
Elsevier |
dc.source.none.fl_str_mv |
reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia instacron:RCAAP |
instname_str |
FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
collection |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository.name.fl_str_mv |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
repository.mail.fl_str_mv |
info@rcaap.pt |
_version_ |
1833594159736291328 |