The frobenius problem for generalized repunit numerical semigroups
Main Author: | |
---|---|
Publication Date: | 2022 |
Other Authors: | , |
Format: | Article |
Language: | eng |
Source: | Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
Download full: | https://hdl.handle.net/20.500.12207/5968 |
Summary: | In this paper, we introduce and study the numerical semigroups generated by {a1, a2, . . .} ⊂ N such that a1 is the repunit number in base b > 1 of length n > 1 and ai − ai−1 = a bi−2, for every i ≥ 2, where a is a positive integer relatively prime with a1. These numerical semigroups generalize the repunit numerical semigroups among many others. We show that they have interesting properties such as being homogeneous and Wilf. Moreover, we solve the Frobenius problem for this family, by giving a closed formula for the Frobenius number in terms of a, b and n, and compute other usual invariants such as the Ap´ery sets, the genus or the type. |
id |
RCAP_cb85563d67531065e6e24ebdfda61a9f |
---|---|
oai_identifier_str |
oai:repositorio.ipbeja.pt:20.500.12207/5968 |
network_acronym_str |
RCAP |
network_name_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository_id_str |
https://opendoar.ac.uk/repository/7160 |
spelling |
The frobenius problem for generalized repunit numerical semigroupsNumerical semigroupApéry setsFrobenius problemGenusTypeWilf conjetureeIn this paper, we introduce and study the numerical semigroups generated by {a1, a2, . . .} ⊂ N such that a1 is the repunit number in base b > 1 of length n > 1 and ai − ai−1 = a bi−2, for every i ≥ 2, where a is a positive integer relatively prime with a1. These numerical semigroups generalize the repunit numerical semigroups among many others. We show that they have interesting properties such as being homogeneous and Wilf. Moreover, we solve the Frobenius problem for this family, by giving a closed formula for the Frobenius number in terms of a, b and n, and compute other usual invariants such as the Ap´ery sets, the genus or the type.Mediterrean Journal of Mathematics2023-10-31T12:06:14Z2022-12-03T00:00:00Z2022-12-03info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttps://hdl.handle.net/20.500.12207/5968eng1660-5454https://doi.org/10.1007/s00009-022-02233-wBranco, Manuel B.Colaço, IsabelOjeda, IgnacioColaço, Isabelinfo:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2025-04-24T11:55:19Zoai:repositorio.ipbeja.pt:20.500.12207/5968Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-29T06:31:56.241771Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse |
dc.title.none.fl_str_mv |
The frobenius problem for generalized repunit numerical semigroups |
title |
The frobenius problem for generalized repunit numerical semigroups |
spellingShingle |
The frobenius problem for generalized repunit numerical semigroups Branco, Manuel B. Numerical semigroup Apéry sets Frobenius problem Genus Type Wilf conjeturee |
title_short |
The frobenius problem for generalized repunit numerical semigroups |
title_full |
The frobenius problem for generalized repunit numerical semigroups |
title_fullStr |
The frobenius problem for generalized repunit numerical semigroups |
title_full_unstemmed |
The frobenius problem for generalized repunit numerical semigroups |
title_sort |
The frobenius problem for generalized repunit numerical semigroups |
author |
Branco, Manuel B. |
author_facet |
Branco, Manuel B. Colaço, Isabel Ojeda, Ignacio |
author_role |
author |
author2 |
Colaço, Isabel Ojeda, Ignacio |
author2_role |
author author |
dc.contributor.author.fl_str_mv |
Branco, Manuel B. Colaço, Isabel Ojeda, Ignacio Colaço, Isabel |
dc.subject.por.fl_str_mv |
Numerical semigroup Apéry sets Frobenius problem Genus Type Wilf conjeturee |
topic |
Numerical semigroup Apéry sets Frobenius problem Genus Type Wilf conjeturee |
description |
In this paper, we introduce and study the numerical semigroups generated by {a1, a2, . . .} ⊂ N such that a1 is the repunit number in base b > 1 of length n > 1 and ai − ai−1 = a bi−2, for every i ≥ 2, where a is a positive integer relatively prime with a1. These numerical semigroups generalize the repunit numerical semigroups among many others. We show that they have interesting properties such as being homogeneous and Wilf. Moreover, we solve the Frobenius problem for this family, by giving a closed formula for the Frobenius number in terms of a, b and n, and compute other usual invariants such as the Ap´ery sets, the genus or the type. |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022-12-03T00:00:00Z 2022-12-03 2023-10-31T12:06:14Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://hdl.handle.net/20.500.12207/5968 |
url |
https://hdl.handle.net/20.500.12207/5968 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
1660-5454 https://doi.org/10.1007/s00009-022-02233-w |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Mediterrean Journal of Mathematics |
publisher.none.fl_str_mv |
Mediterrean Journal of Mathematics |
dc.source.none.fl_str_mv |
reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia instacron:RCAAP |
instname_str |
FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
collection |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository.name.fl_str_mv |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
repository.mail.fl_str_mv |
info@rcaap.pt |
_version_ |
1833602710572630016 |