The frobenius problem for generalized repunit numerical semigroups

Bibliographic Details
Main Author: Branco, Manuel B.
Publication Date: 2022
Other Authors: Colaço, Isabel, Ojeda, Ignacio
Format: Article
Language: eng
Source: Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
Download full: https://hdl.handle.net/20.500.12207/5968
Summary: In this paper, we introduce and study the numerical semigroups generated by {a1, a2, . . .} ⊂ N such that a1 is the repunit number in base b > 1 of length n > 1 and ai − ai−1 = a bi−2, for every i ≥ 2, where a is a positive integer relatively prime with a1. These numerical semigroups generalize the repunit numerical semigroups among many others. We show that they have interesting properties such as being homogeneous and Wilf. Moreover, we solve the Frobenius problem for this family, by giving a closed formula for the Frobenius number in terms of a, b and n, and compute other usual invariants such as the Ap´ery sets, the genus or the type.
id RCAP_cb85563d67531065e6e24ebdfda61a9f
oai_identifier_str oai:repositorio.ipbeja.pt:20.500.12207/5968
network_acronym_str RCAP
network_name_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository_id_str https://opendoar.ac.uk/repository/7160
spelling The frobenius problem for generalized repunit numerical semigroupsNumerical semigroupApéry setsFrobenius problemGenusTypeWilf conjetureeIn this paper, we introduce and study the numerical semigroups generated by {a1, a2, . . .} ⊂ N such that a1 is the repunit number in base b > 1 of length n > 1 and ai − ai−1 = a bi−2, for every i ≥ 2, where a is a positive integer relatively prime with a1. These numerical semigroups generalize the repunit numerical semigroups among many others. We show that they have interesting properties such as being homogeneous and Wilf. Moreover, we solve the Frobenius problem for this family, by giving a closed formula for the Frobenius number in terms of a, b and n, and compute other usual invariants such as the Ap´ery sets, the genus or the type.Mediterrean Journal of Mathematics2023-10-31T12:06:14Z2022-12-03T00:00:00Z2022-12-03info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttps://hdl.handle.net/20.500.12207/5968eng1660-5454https://doi.org/10.1007/s00009-022-02233-wBranco, Manuel B.Colaço, IsabelOjeda, IgnacioColaço, Isabelinfo:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2025-04-24T11:55:19Zoai:repositorio.ipbeja.pt:20.500.12207/5968Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-29T06:31:56.241771Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse
dc.title.none.fl_str_mv The frobenius problem for generalized repunit numerical semigroups
title The frobenius problem for generalized repunit numerical semigroups
spellingShingle The frobenius problem for generalized repunit numerical semigroups
Branco, Manuel B.
Numerical semigroup
Apéry sets
Frobenius problem
Genus
Type
Wilf conjeturee
title_short The frobenius problem for generalized repunit numerical semigroups
title_full The frobenius problem for generalized repunit numerical semigroups
title_fullStr The frobenius problem for generalized repunit numerical semigroups
title_full_unstemmed The frobenius problem for generalized repunit numerical semigroups
title_sort The frobenius problem for generalized repunit numerical semigroups
author Branco, Manuel B.
author_facet Branco, Manuel B.
Colaço, Isabel
Ojeda, Ignacio
author_role author
author2 Colaço, Isabel
Ojeda, Ignacio
author2_role author
author
dc.contributor.author.fl_str_mv Branco, Manuel B.
Colaço, Isabel
Ojeda, Ignacio
Colaço, Isabel
dc.subject.por.fl_str_mv Numerical semigroup
Apéry sets
Frobenius problem
Genus
Type
Wilf conjeturee
topic Numerical semigroup
Apéry sets
Frobenius problem
Genus
Type
Wilf conjeturee
description In this paper, we introduce and study the numerical semigroups generated by {a1, a2, . . .} ⊂ N such that a1 is the repunit number in base b > 1 of length n > 1 and ai − ai−1 = a bi−2, for every i ≥ 2, where a is a positive integer relatively prime with a1. These numerical semigroups generalize the repunit numerical semigroups among many others. We show that they have interesting properties such as being homogeneous and Wilf. Moreover, we solve the Frobenius problem for this family, by giving a closed formula for the Frobenius number in terms of a, b and n, and compute other usual invariants such as the Ap´ery sets, the genus or the type.
publishDate 2022
dc.date.none.fl_str_mv 2022-12-03T00:00:00Z
2022-12-03
2023-10-31T12:06:14Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://hdl.handle.net/20.500.12207/5968
url https://hdl.handle.net/20.500.12207/5968
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 1660-5454
https://doi.org/10.1007/s00009-022-02233-w
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Mediterrean Journal of Mathematics
publisher.none.fl_str_mv Mediterrean Journal of Mathematics
dc.source.none.fl_str_mv reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron:RCAAP
instname_str FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron_str RCAAP
institution RCAAP
reponame_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
collection Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository.name.fl_str_mv Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
repository.mail.fl_str_mv info@rcaap.pt
_version_ 1833602710572630016