An Adaptive Learning-Based Approach for Vehicle Mobility Prediction
| Autor(a) principal: | |
|---|---|
| Data de Publicação: | 2021 |
| Outros Autores: | , , |
| Tipo de documento: | Artigo |
| Idioma: | eng |
| Título da fonte: | Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| Texto Completo: | http://hdl.handle.net/10362/123686 |
Resumo: | POCI-01-0145-FEDER-030433 LISBOA-01-0145-FEDER-0307095 |
| id |
RCAP_c9dd9aad232c4777d1e79009c923fffa |
|---|---|
| oai_identifier_str |
oai:run.unl.pt:10362/123686 |
| network_acronym_str |
RCAP |
| network_name_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| repository_id_str |
https://opendoar.ac.uk/repository/7160 |
| spelling |
An Adaptive Learning-Based Approach for Vehicle Mobility Predictionestimation and modelinghidden Markov modelmachine learningTrajectory predictionComputer Science(all)Materials Science(all)Engineering(all)POCI-01-0145-FEDER-030433 LISBOA-01-0145-FEDER-0307095This work presents an innovative methodology to predict the future trajectories of vehicles when its current and previous locations are known. We propose an algorithm to adapt the vehicles trajectories' data based on consecutive GPS locations and to construct a statistical inference module that can be used online for mobility prediction. The inference module is based on a hidden Markov model (HMM), where each trajectory is modeled as a subset of consecutive locations. The prediction stage uses the statistical information inferred so far and is based on the Viterbi algorithm, which identifies the subset of consecutive locations (hidden information) with the maximum likelihood when a prior subset of locations are known (observations). By analyzing the disadvantages of using the Viterbi algorithm (TDVIT) when the number of hidden states increases, we propose an enhanced algorithm (OPTVIT), which decreases the prediction computation time. Offline analysis of vehicle mobility is conducted through the evaluation of a dataset containing real traces of 442 taxis running in the city of Porto, Portugal, during a full year. Experimental results obtained with the dataset show that the prediction process is improved when more information about prior vehicle mobility is available. Moreover, the computation time of the prediction process is significantly improved when OPTVIT is adopted and approximately 90% of prediction performance can be achieved, showing the effectiveness of the proposed method for vehicle trajectory prediction.DEE - Departamento de Engenharia Electrotécnica e de ComputadoresRUNIrio, LuisIp, AndreOliveira, RodolfoLuis, Miguel2021-09-03T00:12:10Z20212021-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article12application/pdfhttp://hdl.handle.net/10362/123686engPURE: 28576362https://doi.org/10.1109/ACCESS.2021.3052071info:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2024-05-22T17:55:34Zoai:run.unl.pt:10362/123686Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T17:26:34.113966Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse |
| dc.title.none.fl_str_mv |
An Adaptive Learning-Based Approach for Vehicle Mobility Prediction |
| title |
An Adaptive Learning-Based Approach for Vehicle Mobility Prediction |
| spellingShingle |
An Adaptive Learning-Based Approach for Vehicle Mobility Prediction Irio, Luis estimation and modeling hidden Markov model machine learning Trajectory prediction Computer Science(all) Materials Science(all) Engineering(all) |
| title_short |
An Adaptive Learning-Based Approach for Vehicle Mobility Prediction |
| title_full |
An Adaptive Learning-Based Approach for Vehicle Mobility Prediction |
| title_fullStr |
An Adaptive Learning-Based Approach for Vehicle Mobility Prediction |
| title_full_unstemmed |
An Adaptive Learning-Based Approach for Vehicle Mobility Prediction |
| title_sort |
An Adaptive Learning-Based Approach for Vehicle Mobility Prediction |
| author |
Irio, Luis |
| author_facet |
Irio, Luis Ip, Andre Oliveira, Rodolfo Luis, Miguel |
| author_role |
author |
| author2 |
Ip, Andre Oliveira, Rodolfo Luis, Miguel |
| author2_role |
author author author |
| dc.contributor.none.fl_str_mv |
DEE - Departamento de Engenharia Electrotécnica e de Computadores RUN |
| dc.contributor.author.fl_str_mv |
Irio, Luis Ip, Andre Oliveira, Rodolfo Luis, Miguel |
| dc.subject.por.fl_str_mv |
estimation and modeling hidden Markov model machine learning Trajectory prediction Computer Science(all) Materials Science(all) Engineering(all) |
| topic |
estimation and modeling hidden Markov model machine learning Trajectory prediction Computer Science(all) Materials Science(all) Engineering(all) |
| description |
POCI-01-0145-FEDER-030433 LISBOA-01-0145-FEDER-0307095 |
| publishDate |
2021 |
| dc.date.none.fl_str_mv |
2021-09-03T00:12:10Z 2021 2021-01-01T00:00:00Z |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10362/123686 |
| url |
http://hdl.handle.net/10362/123686 |
| dc.language.iso.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
PURE: 28576362 https://doi.org/10.1109/ACCESS.2021.3052071 |
| dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
12 application/pdf |
| dc.source.none.fl_str_mv |
reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia instacron:RCAAP |
| instname_str |
FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
| instacron_str |
RCAAP |
| institution |
RCAAP |
| reponame_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| collection |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| repository.name.fl_str_mv |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
| repository.mail.fl_str_mv |
info@rcaap.pt |
| _version_ |
1833596698399604736 |