Single and Multi-objective Genetic Programming Methods for Prediction Intervals
| Autor(a) principal: | |
|---|---|
| Data de Publicação: | 2023 |
| Outros Autores: | , , |
| Idioma: | eng |
| Título da fonte: | Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| Texto Completo: | http://hdl.handle.net/10362/162074 |
Resumo: | Brotto Rebuli, K., Giacobini, M., Tallone, N., & Vanneschi, L. (2023). Single and Multi-objective Genetic Programming Methods for Prediction Intervals. In C. de Stefano, F. Fontanella, & L. Vanneschi (Eds.), Artificial Life and Evolutionary Computation: 16th Italian Workshop, WIVACE 2022, Gaeta, Italy, September 14–16, 2022, Revised Selected Papers (pp. 205-218). (Communications in Computer and Information Science; Vol. 1780). Springer, Cham. https://doi.org/10.1007/978-3-031-31183-3_17 |
| id |
RCAP_a6b1132d79977b9335dd2442f0f4ee0e |
|---|---|
| oai_identifier_str |
oai:run.unl.pt:10362/162074 |
| network_acronym_str |
RCAP |
| network_name_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| repository_id_str |
https://opendoar.ac.uk/repository/7160 |
| spelling |
Single and Multi-objective Genetic Programming Methods for Prediction IntervalsPrediction IntervalCrisp predictionModelling uncertaintyMachine LearningComputer Science(all)Mathematics(all)Brotto Rebuli, K., Giacobini, M., Tallone, N., & Vanneschi, L. (2023). Single and Multi-objective Genetic Programming Methods for Prediction Intervals. In C. de Stefano, F. Fontanella, & L. Vanneschi (Eds.), Artificial Life and Evolutionary Computation: 16th Italian Workshop, WIVACE 2022, Gaeta, Italy, September 14–16, 2022, Revised Selected Papers (pp. 205-218). (Communications in Computer and Information Science; Vol. 1780). Springer, Cham. https://doi.org/10.1007/978-3-031-31183-3_17A PI is the range of values in which the real target value of a supervised learning task is expected to fall into, and it should combine two contrasting properties: to be as narrow as possible, and to include as many data observations as possible. This article presents an study on modelling Prediction Intervals (PI) with two Genetic Programming (GP) methods. The first proposed GP method is called CWC-GP, and it evolves simultaneously the lower and upper boundaries of the PI using a single fitness measure. This measure is the Coverage Width-based Criterion (CWC), which combines the width and the probability coverage of the PI. The second proposed GP method is called LUBE-GP, and it evolves independently the lower and upper boundaries of the PI. This method applies a multi-objective approach, in which one fitness aims to minimise the width and the other aims to maximise the probability coverage of the PI. Both methods were applied with the Direct and the Sequential approaches. In the former, the PI is assessed without the crisp prediction of the model. In the latter, the method makes use of the crisp prediction to find the PI boundaries. The proposed methods showed to have good potential on assessing PIs and the results pave the way to further investigations.Springer, ChamNOVA Information Management School (NOVA IMS)Information Management Research Center (MagIC) - NOVA Information Management SchoolRUNBrotto Rebuli, KarinaGiacobini, MarioTallone, NiccolòVanneschi, Leonardo2024-05-01T00:32:42Z2023-04-302023-04-30T00:00:00Zconference objectinfo:eu-repo/semantics/publishedVersion14application/pdfhttp://hdl.handle.net/10362/162074eng978-3-031-31182-61865-0929PURE: 59818198https://doi.org/10.1007/978-3-031-31183-3_17info:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2024-05-22T18:17:13Zoai:run.unl.pt:10362/162074Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T17:47:51.278845Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse |
| dc.title.none.fl_str_mv |
Single and Multi-objective Genetic Programming Methods for Prediction Intervals |
| title |
Single and Multi-objective Genetic Programming Methods for Prediction Intervals |
| spellingShingle |
Single and Multi-objective Genetic Programming Methods for Prediction Intervals Brotto Rebuli, Karina Prediction Interval Crisp prediction Modelling uncertainty Machine Learning Computer Science(all) Mathematics(all) |
| title_short |
Single and Multi-objective Genetic Programming Methods for Prediction Intervals |
| title_full |
Single and Multi-objective Genetic Programming Methods for Prediction Intervals |
| title_fullStr |
Single and Multi-objective Genetic Programming Methods for Prediction Intervals |
| title_full_unstemmed |
Single and Multi-objective Genetic Programming Methods for Prediction Intervals |
| title_sort |
Single and Multi-objective Genetic Programming Methods for Prediction Intervals |
| author |
Brotto Rebuli, Karina |
| author_facet |
Brotto Rebuli, Karina Giacobini, Mario Tallone, Niccolò Vanneschi, Leonardo |
| author_role |
author |
| author2 |
Giacobini, Mario Tallone, Niccolò Vanneschi, Leonardo |
| author2_role |
author author author |
| dc.contributor.none.fl_str_mv |
NOVA Information Management School (NOVA IMS) Information Management Research Center (MagIC) - NOVA Information Management School RUN |
| dc.contributor.author.fl_str_mv |
Brotto Rebuli, Karina Giacobini, Mario Tallone, Niccolò Vanneschi, Leonardo |
| dc.subject.por.fl_str_mv |
Prediction Interval Crisp prediction Modelling uncertainty Machine Learning Computer Science(all) Mathematics(all) |
| topic |
Prediction Interval Crisp prediction Modelling uncertainty Machine Learning Computer Science(all) Mathematics(all) |
| description |
Brotto Rebuli, K., Giacobini, M., Tallone, N., & Vanneschi, L. (2023). Single and Multi-objective Genetic Programming Methods for Prediction Intervals. In C. de Stefano, F. Fontanella, & L. Vanneschi (Eds.), Artificial Life and Evolutionary Computation: 16th Italian Workshop, WIVACE 2022, Gaeta, Italy, September 14–16, 2022, Revised Selected Papers (pp. 205-218). (Communications in Computer and Information Science; Vol. 1780). Springer, Cham. https://doi.org/10.1007/978-3-031-31183-3_17 |
| publishDate |
2023 |
| dc.date.none.fl_str_mv |
2023-04-30 2023-04-30T00:00:00Z 2024-05-01T00:32:42Z |
| dc.type.driver.fl_str_mv |
conference object |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| status_str |
publishedVersion |
| dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10362/162074 |
| url |
http://hdl.handle.net/10362/162074 |
| dc.language.iso.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
978-3-031-31182-6 1865-0929 PURE: 59818198 https://doi.org/10.1007/978-3-031-31183-3_17 |
| dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
14 application/pdf |
| dc.publisher.none.fl_str_mv |
Springer, Cham |
| publisher.none.fl_str_mv |
Springer, Cham |
| dc.source.none.fl_str_mv |
reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia instacron:RCAAP |
| instname_str |
FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
| instacron_str |
RCAAP |
| institution |
RCAAP |
| reponame_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| collection |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| repository.name.fl_str_mv |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
| repository.mail.fl_str_mv |
info@rcaap.pt |
| _version_ |
1833596968793800704 |