Wavelet-Based Detection of Outliers in Poisson INAR(1) Time Series

Bibliographic Details
Main Author: Isabel Silva
Publication Date: 2018
Other Authors: Maria Eduarda Silva
Format: Book
Language: eng
Source: Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
Download full: https://hdl.handle.net/10216/111744
Summary: The presence of outliers or discrepant observations has a negative impact in time series modelling. This paper considers the problem of detecting outliers, additive or innovational, single, multiple or in patches, in count time series modelled by first-order Poisson integer-valued autoregressive, PoINAR(1), models. To address this problem, two wavelet-based approaches that allow the identification of the time points of outlier occurrence are proposed. The effectiveness of the proposed methods is illustrated with synthetic as well as with an observed dataset.
id RCAP_be851d1cc50c882bb162e95802f3de1e
oai_identifier_str oai:repositorio-aberto.up.pt:10216/111744
network_acronym_str RCAP
network_name_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository_id_str https://opendoar.ac.uk/repository/7160
spelling Wavelet-Based Detection of Outliers in Poisson INAR(1) Time SeriesThe presence of outliers or discrepant observations has a negative impact in time series modelling. This paper considers the problem of detecting outliers, additive or innovational, single, multiple or in patches, in count time series modelled by first-order Poisson integer-valued autoregressive, PoINAR(1), models. To address this problem, two wavelet-based approaches that allow the identification of the time points of outlier occurrence are proposed. The effectiveness of the proposed methods is illustrated with synthetic as well as with an observed dataset.20182018-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/bookapplication/pdfhttps://hdl.handle.net/10216/111744eng10.1007/978-3-319-76605-8_13Isabel SilvaMaria Eduarda Silvainfo:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2025-02-27T18:10:45Zoai:repositorio-aberto.up.pt:10216/111744Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T22:40:12.111653Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse
dc.title.none.fl_str_mv Wavelet-Based Detection of Outliers in Poisson INAR(1) Time Series
title Wavelet-Based Detection of Outliers in Poisson INAR(1) Time Series
spellingShingle Wavelet-Based Detection of Outliers in Poisson INAR(1) Time Series
Isabel Silva
title_short Wavelet-Based Detection of Outliers in Poisson INAR(1) Time Series
title_full Wavelet-Based Detection of Outliers in Poisson INAR(1) Time Series
title_fullStr Wavelet-Based Detection of Outliers in Poisson INAR(1) Time Series
title_full_unstemmed Wavelet-Based Detection of Outliers in Poisson INAR(1) Time Series
title_sort Wavelet-Based Detection of Outliers in Poisson INAR(1) Time Series
author Isabel Silva
author_facet Isabel Silva
Maria Eduarda Silva
author_role author
author2 Maria Eduarda Silva
author2_role author
dc.contributor.author.fl_str_mv Isabel Silva
Maria Eduarda Silva
description The presence of outliers or discrepant observations has a negative impact in time series modelling. This paper considers the problem of detecting outliers, additive or innovational, single, multiple or in patches, in count time series modelled by first-order Poisson integer-valued autoregressive, PoINAR(1), models. To address this problem, two wavelet-based approaches that allow the identification of the time points of outlier occurrence are proposed. The effectiveness of the proposed methods is illustrated with synthetic as well as with an observed dataset.
publishDate 2018
dc.date.none.fl_str_mv 2018
2018-01-01T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/book
format book
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://hdl.handle.net/10216/111744
url https://hdl.handle.net/10216/111744
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 10.1007/978-3-319-76605-8_13
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron:RCAAP
instname_str FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron_str RCAAP
institution RCAAP
reponame_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
collection Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository.name.fl_str_mv Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
repository.mail.fl_str_mv info@rcaap.pt
_version_ 1833599800740675584