Wavelet-based detection of outliers in Poisson INAR(1) time series
Main Author: | |
---|---|
Publication Date: | 2018 |
Other Authors: | |
Language: | eng |
Source: | Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
Download full: | http://hdl.handle.net/10773/35418 |
Summary: | The presence of outliers or discrepant observations has a negative impact in time series modelling. This paper considers the problem of detecting outliers, additive or innovational, single, multiple or in patches, in count time series modelled by first-order Poisson integer-valued autoregressive, PoINAR(1), models. To address this problem, two wavelet-based approaches that allow the identification of the time points of outlier occurrence are proposed. The effectiveness of the proposed methods is illustrated with synthetic as well as with an observed dataset. |
id |
RCAP_a27bc11edaee16d727231ed76ffdc95d |
---|---|
oai_identifier_str |
oai:ria.ua.pt:10773/35418 |
network_acronym_str |
RCAP |
network_name_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository_id_str |
https://opendoar.ac.uk/repository/7160 |
spelling |
Wavelet-based detection of outliers in Poisson INAR(1) time seriesPoisson INAROutlier occurrenceCount time seriesAcceptance envelopeLevel detail coefficientsThe presence of outliers or discrepant observations has a negative impact in time series modelling. This paper considers the problem of detecting outliers, additive or innovational, single, multiple or in patches, in count time series modelled by first-order Poisson integer-valued autoregressive, PoINAR(1), models. To address this problem, two wavelet-based approaches that allow the identification of the time points of outlier occurrence are proposed. The effectiveness of the proposed methods is illustrated with synthetic as well as with an observed dataset.Springer2022-12-13T09:53:20Z2018-01-01T00:00:00Z2018book partinfo:eu-repo/semantics/publishedVersionapplication/pdfhttp://hdl.handle.net/10773/35418eng978-3-319-76604-110.1007/978-3-319-76605-8_13Silva, IsabelSilva, Maria Eduardainfo:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2024-05-06T04:40:32Zoai:ria.ua.pt:10773/35418Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T14:16:36.982010Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse |
dc.title.none.fl_str_mv |
Wavelet-based detection of outliers in Poisson INAR(1) time series |
title |
Wavelet-based detection of outliers in Poisson INAR(1) time series |
spellingShingle |
Wavelet-based detection of outliers in Poisson INAR(1) time series Silva, Isabel Poisson INAR Outlier occurrence Count time series Acceptance envelope Level detail coefficients |
title_short |
Wavelet-based detection of outliers in Poisson INAR(1) time series |
title_full |
Wavelet-based detection of outliers in Poisson INAR(1) time series |
title_fullStr |
Wavelet-based detection of outliers in Poisson INAR(1) time series |
title_full_unstemmed |
Wavelet-based detection of outliers in Poisson INAR(1) time series |
title_sort |
Wavelet-based detection of outliers in Poisson INAR(1) time series |
author |
Silva, Isabel |
author_facet |
Silva, Isabel Silva, Maria Eduarda |
author_role |
author |
author2 |
Silva, Maria Eduarda |
author2_role |
author |
dc.contributor.author.fl_str_mv |
Silva, Isabel Silva, Maria Eduarda |
dc.subject.por.fl_str_mv |
Poisson INAR Outlier occurrence Count time series Acceptance envelope Level detail coefficients |
topic |
Poisson INAR Outlier occurrence Count time series Acceptance envelope Level detail coefficients |
description |
The presence of outliers or discrepant observations has a negative impact in time series modelling. This paper considers the problem of detecting outliers, additive or innovational, single, multiple or in patches, in count time series modelled by first-order Poisson integer-valued autoregressive, PoINAR(1), models. To address this problem, two wavelet-based approaches that allow the identification of the time points of outlier occurrence are proposed. The effectiveness of the proposed methods is illustrated with synthetic as well as with an observed dataset. |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018-01-01T00:00:00Z 2018 2022-12-13T09:53:20Z |
dc.type.driver.fl_str_mv |
book part |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10773/35418 |
url |
http://hdl.handle.net/10773/35418 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
978-3-319-76604-1 10.1007/978-3-319-76605-8_13 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Springer |
publisher.none.fl_str_mv |
Springer |
dc.source.none.fl_str_mv |
reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia instacron:RCAAP |
instname_str |
FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
collection |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository.name.fl_str_mv |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
repository.mail.fl_str_mv |
info@rcaap.pt |
_version_ |
1833594455387537408 |