Geogebra e os conjuntos de Julia e Mandelbrot
Main Author: | |
---|---|
Publication Date: | 2013 |
Format: | Article |
Language: | por |
Source: | Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
Download full: | https://doi.org/10.34624/id.v5i1.4308 |
Summary: | The study of fractals began with many protagonists, but none was as appealing as the Mandelbrot and Julia sets. The iterative system associated with the two sets is , c being fixed for each Julia set and for the Mandelbrot set. The Mandelbrot set is certainly the most popular fractal of contemporary mathematics. We can say that it is the most beautiful and the most complex. I should point out that what is outside the circle of radius 2 is not part of the Mandelbrot set. Moreover, for the actual c parameters with the iteration of the critical point is bounded and the Julia set is connected. Theoretically, this might require knowledge of the orbit, that is, an infinite number of iterations and if the starting point is at the captive set or not. In the chapter of complex numbers in grade 12, we can, in an informal way, without further scientific knowledge, prove the whole theory involving these sets, in which we use a lot of content taught in secondary education, such as composite functions, complex numbers and their properties. This leads students to study and examine this chapter more thoroughly, in a more appealing way, making them intervene, interact and develop their cognitive abilities. The Geogebra program and the use of its potentialities is very dependent on the pedagogical proposals that accompany its use. This program was granted for an educational environment and that is where, of course, its eventual educational potential will be more fully revealed. |
id |
RCAP_be6b44397ba2c928cb1e9e3e97b64692 |
---|---|
oai_identifier_str |
oai:proa.ua.pt:article/4308 |
network_acronym_str |
RCAP |
network_name_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository_id_str |
https://opendoar.ac.uk/repository/7160 |
spelling |
Geogebra e os conjuntos de Julia e MandelbrotThe study of fractals began with many protagonists, but none was as appealing as the Mandelbrot and Julia sets. The iterative system associated with the two sets is , c being fixed for each Julia set and for the Mandelbrot set. The Mandelbrot set is certainly the most popular fractal of contemporary mathematics. We can say that it is the most beautiful and the most complex. I should point out that what is outside the circle of radius 2 is not part of the Mandelbrot set. Moreover, for the actual c parameters with the iteration of the critical point is bounded and the Julia set is connected. Theoretically, this might require knowledge of the orbit, that is, an infinite number of iterations and if the starting point is at the captive set or not. In the chapter of complex numbers in grade 12, we can, in an informal way, without further scientific knowledge, prove the whole theory involving these sets, in which we use a lot of content taught in secondary education, such as composite functions, complex numbers and their properties. This leads students to study and examine this chapter more thoroughly, in a more appealing way, making them intervene, interact and develop their cognitive abilities. The Geogebra program and the use of its potentialities is very dependent on the pedagogical proposals that accompany its use. This program was granted for an educational environment and that is where, of course, its eventual educational potential will be more fully revealed.L’étude des fractals a commencé avec beaucoup de protagonistes mais aucun d’eux n’était aussi appellatif que l’ensemble Julia et Mandelbrot. Le système itératif associé aux deux ensembles est , c étant fixe pour chaque ensemble de Julia et dans l’ ensemble de Mandelbrot. L’ensemble de Mandelbrot est certainement le fractal le plus populaire de la mathématique contemporaine. Nous pouvons même affirmer qu’il est le plus joli et le plus complexe. Nous faisons remarquer que tout ce qui est extérieur au cercle de rayon 2 ne fait pas partie de l’ensemble de Mandelbrot. De plus, pour les paramètres C réels de l´ itération du point critique est délimitée et l’ensemble de Julia est relationnel. Théoriquement, ceci peut exiger la connaissance de l’orbite, soit, un nombre infini d’itérations et aussi savoir si le point initial se situe dans l’ensemble prisonnier ou pas. Au chapitre des nombres complexes de 12ème année(12ème année est l’équivalent à la terminale en France), nous pouvons, informellement et sans approfondir les connaissances scientifiques, mettre en évidence toute la théorie rapportée à ces ensembles, en utilisant beaucoup de contenus enseignés au secondaire, comme par exemple, la fonction composée, les nombres complexes et leurs propriétés, ce qui fait que les élèves étudient et approfondissent bien ce chapitre d’une façon plus attrayante tout en les faisant participer, interagir et développer toutes leurs capacités cognitives. Le programme GEOGEBRA et le bénéfice des capacités que l’on peut en extraire, dependent beaucoup des abordages pédagogiques qui accompagnent son utilisation. Ce programme a été conçu pour être utilisé en milieu pédagogique et c’est dans ce milieu que ses éventuelles capacités éducatives se révéleront d’une façon plus complète.O estudo dos fractais começou com muitos protagonistas, mas nenhum era tão apelativo, como os conjuntos de Julia e Mandelbrot. O sistema iterativo associado aos dois conjuntos é , sendo c fixo para cada conjunto de Julia e no conjunto de Mandelbrot. Este é certamente o fractal mais popular da matemática contemporânea. Podemos afirmar que é o mais bonito, e o mais complexo. Saliente-se que tudo o que é exterior ao círculo de raio 2 não faz parte do conjunto de Mandelbrot. Além disso, para os parâmetros c reais com a iteração do ponto crítico é delimitada e o conjunto de Julia é conexo. Teoricamente, isto pode exigir conhecimento da órbita, isto é, um número infinito de iterações e se o ponto inicial está no conjunto prisioneiro ou não. No capítulo de números complexos do 12ºano, podemos de uma forma informal, sem aprofundar conhecimentos científicos, evidenciar toda a teoria envolvente destes conjuntos, em que utilizamos muitos conteúdos lecionados no ensino secundário, nomeadamente função composta, números complexos e suas propriedades, o que leva os alunos a estudar e aprofundar bem este capítulo de uma forma mais apelativa, levando-os a intervir, interagir e a desenvolver todas as suas capacidades cognitivas. O programa Geogebra e o aproveitamento das suas potencialidades estão muito dependentes das propostas pedagógicas que acompanham a sua utilização. Este programa foi concebido para um ambiente pedagógico e é aí, naturalmente, que as suas eventuais potencialidades educativas se revelarão de forma mais completa.Centro de Investigação Didática e Tecnologia na Formação de Formadores (CIDTFF) / Universidade de Aveiro2013-01-30info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttps://doi.org/10.34624/id.v5i1.4308https://doi.org/10.34624/id.v5i1.4308Indagatio Didactica; Vol 5 No 1 (2013); 103-126Indagatio Didactica; Vol. 5 Núm. 1 (2013); 103-126Indagatio Didactica; Vol. 5 No 1 (2013); 103-126Indagatio Didactica; vol. 5 n.º 1 (2013); 103-1261647-3582reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAPporhttps://proa.ua.pt/index.php/id/article/view/4308https://proa.ua.pt/index.php/id/article/view/4308/3242Direitos de Autor (c) 2021 Indagatio Didacticainfo:eu-repo/semantics/openAccessFrederico, Ana2023-09-22T10:16:12Zoai:proa.ua.pt:article/4308Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T11:07:00.444228Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse |
dc.title.none.fl_str_mv |
Geogebra e os conjuntos de Julia e Mandelbrot |
title |
Geogebra e os conjuntos de Julia e Mandelbrot |
spellingShingle |
Geogebra e os conjuntos de Julia e Mandelbrot Frederico, Ana |
title_short |
Geogebra e os conjuntos de Julia e Mandelbrot |
title_full |
Geogebra e os conjuntos de Julia e Mandelbrot |
title_fullStr |
Geogebra e os conjuntos de Julia e Mandelbrot |
title_full_unstemmed |
Geogebra e os conjuntos de Julia e Mandelbrot |
title_sort |
Geogebra e os conjuntos de Julia e Mandelbrot |
author |
Frederico, Ana |
author_facet |
Frederico, Ana |
author_role |
author |
dc.contributor.author.fl_str_mv |
Frederico, Ana |
description |
The study of fractals began with many protagonists, but none was as appealing as the Mandelbrot and Julia sets. The iterative system associated with the two sets is , c being fixed for each Julia set and for the Mandelbrot set. The Mandelbrot set is certainly the most popular fractal of contemporary mathematics. We can say that it is the most beautiful and the most complex. I should point out that what is outside the circle of radius 2 is not part of the Mandelbrot set. Moreover, for the actual c parameters with the iteration of the critical point is bounded and the Julia set is connected. Theoretically, this might require knowledge of the orbit, that is, an infinite number of iterations and if the starting point is at the captive set or not. In the chapter of complex numbers in grade 12, we can, in an informal way, without further scientific knowledge, prove the whole theory involving these sets, in which we use a lot of content taught in secondary education, such as composite functions, complex numbers and their properties. This leads students to study and examine this chapter more thoroughly, in a more appealing way, making them intervene, interact and develop their cognitive abilities. The Geogebra program and the use of its potentialities is very dependent on the pedagogical proposals that accompany its use. This program was granted for an educational environment and that is where, of course, its eventual educational potential will be more fully revealed. |
publishDate |
2013 |
dc.date.none.fl_str_mv |
2013-01-30 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://doi.org/10.34624/id.v5i1.4308 https://doi.org/10.34624/id.v5i1.4308 |
url |
https://doi.org/10.34624/id.v5i1.4308 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.none.fl_str_mv |
https://proa.ua.pt/index.php/id/article/view/4308 https://proa.ua.pt/index.php/id/article/view/4308/3242 |
dc.rights.driver.fl_str_mv |
Direitos de Autor (c) 2021 Indagatio Didactica info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Direitos de Autor (c) 2021 Indagatio Didactica |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Centro de Investigação Didática e Tecnologia na Formação de Formadores (CIDTFF) / Universidade de Aveiro |
publisher.none.fl_str_mv |
Centro de Investigação Didática e Tecnologia na Formação de Formadores (CIDTFF) / Universidade de Aveiro |
dc.source.none.fl_str_mv |
Indagatio Didactica; Vol 5 No 1 (2013); 103-126 Indagatio Didactica; Vol. 5 Núm. 1 (2013); 103-126 Indagatio Didactica; Vol. 5 No 1 (2013); 103-126 Indagatio Didactica; vol. 5 n.º 1 (2013); 103-126 1647-3582 reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia instacron:RCAAP |
instname_str |
FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
collection |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository.name.fl_str_mv |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
repository.mail.fl_str_mv |
info@rcaap.pt |
_version_ |
1833591593898082304 |