GRIDDS - A Gait Recognition Image and Depth Dataset

Bibliographic Details
Main Author: João Ferreira Nunes
Publication Date: 2019
Other Authors: Pedro Miguel Moreira, João Manuel R. S. Tavares
Format: Book
Language: eng
Source: Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
Download full: https://hdl.handle.net/10216/124717
Summary: Several approaches based on human gait have been proposed in the literature, either for medical research reasons, smart surveillance, human-machine interaction, or other purposes, whose validation highly depends on the access to common input data through available datasets, enabling a coherent performance comparison. The advent of depth sensors leveraged the emergence of novel approaches and, consequently, the usage of new datasets. In this work we present the GRIDDS - A Gait Recognition Image and Depth Dataset, a new and publicly available gait depth-based dataset that can be used mostly for person and gender recognition purposes. (c) Springer Nature Switzerland AG 2019.
id RCAP_be2eaaed3c0af1c23a4160f4f28071df
oai_identifier_str oai:repositorio-aberto.up.pt:10216/124717
network_acronym_str RCAP
network_name_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository_id_str https://opendoar.ac.uk/repository/7160
spelling GRIDDS - A Gait Recognition Image and Depth DatasetCiências Tecnológicas, Ciências médicas e da saúdeTechnological sciences, Medical and Health sciencesSeveral approaches based on human gait have been proposed in the literature, either for medical research reasons, smart surveillance, human-machine interaction, or other purposes, whose validation highly depends on the access to common input data through available datasets, enabling a coherent performance comparison. The advent of depth sensors leveraged the emergence of novel approaches and, consequently, the usage of new datasets. In this work we present the GRIDDS - A Gait Recognition Image and Depth Dataset, a new and publicly available gait depth-based dataset that can be used mostly for person and gender recognition purposes. (c) Springer Nature Switzerland AG 2019.2019-102019-10-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/bookapplication/pdfhttps://hdl.handle.net/10216/124717eng10.1007/978-3-030-32040-9_36João Ferreira NunesPedro Miguel MoreiraJoão Manuel R. S. Tavaresinfo:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2025-02-27T17:23:12Zoai:repositorio-aberto.up.pt:10216/124717Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T22:12:35.859627Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse
dc.title.none.fl_str_mv GRIDDS - A Gait Recognition Image and Depth Dataset
title GRIDDS - A Gait Recognition Image and Depth Dataset
spellingShingle GRIDDS - A Gait Recognition Image and Depth Dataset
João Ferreira Nunes
Ciências Tecnológicas, Ciências médicas e da saúde
Technological sciences, Medical and Health sciences
title_short GRIDDS - A Gait Recognition Image and Depth Dataset
title_full GRIDDS - A Gait Recognition Image and Depth Dataset
title_fullStr GRIDDS - A Gait Recognition Image and Depth Dataset
title_full_unstemmed GRIDDS - A Gait Recognition Image and Depth Dataset
title_sort GRIDDS - A Gait Recognition Image and Depth Dataset
author João Ferreira Nunes
author_facet João Ferreira Nunes
Pedro Miguel Moreira
João Manuel R. S. Tavares
author_role author
author2 Pedro Miguel Moreira
João Manuel R. S. Tavares
author2_role author
author
dc.contributor.author.fl_str_mv João Ferreira Nunes
Pedro Miguel Moreira
João Manuel R. S. Tavares
dc.subject.por.fl_str_mv Ciências Tecnológicas, Ciências médicas e da saúde
Technological sciences, Medical and Health sciences
topic Ciências Tecnológicas, Ciências médicas e da saúde
Technological sciences, Medical and Health sciences
description Several approaches based on human gait have been proposed in the literature, either for medical research reasons, smart surveillance, human-machine interaction, or other purposes, whose validation highly depends on the access to common input data through available datasets, enabling a coherent performance comparison. The advent of depth sensors leveraged the emergence of novel approaches and, consequently, the usage of new datasets. In this work we present the GRIDDS - A Gait Recognition Image and Depth Dataset, a new and publicly available gait depth-based dataset that can be used mostly for person and gender recognition purposes. (c) Springer Nature Switzerland AG 2019.
publishDate 2019
dc.date.none.fl_str_mv 2019-10
2019-10-01T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/book
format book
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://hdl.handle.net/10216/124717
url https://hdl.handle.net/10216/124717
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 10.1007/978-3-030-32040-9_36
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron:RCAAP
instname_str FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron_str RCAAP
institution RCAAP
reponame_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
collection Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository.name.fl_str_mv Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
repository.mail.fl_str_mv info@rcaap.pt
_version_ 1833599597559152640