GRIDDS - a gait recognition image and depth dataset
| Main Author: | |
|---|---|
| Publication Date: | 2019 |
| Other Authors: | , |
| Language: | eng |
| Source: | Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| Download full: | http://hdl.handle.net/20.500.11960/3099 |
Summary: | Several approaches based on human gait have been proposed in the literature, either for medical research reasons, smart surveillance, human-machine interaction, or other purposes, whose validation highly depends on the access to common input data through available datasets, enabling a coherent performance comparison. The advent of depth sensors leveraged the emergence of novel approaches and, consequently, the usage of new datasets. In this work we present the GRIDDS - A Gait Recognition Image and Depth Dataset, a new and publicly available gait depth-based dataset that can be used mostly for person and gender recognition purposes. |
| id |
RCAP_a91dc8d75dfd06df09666f97c6bb3085 |
|---|---|
| oai_identifier_str |
oai:repositorio.ipvc.pt:20.500.11960/3099 |
| network_acronym_str |
RCAP |
| network_name_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| repository_id_str |
https://opendoar.ac.uk/repository/7160 |
| spelling |
GRIDDS - a gait recognition image and depth datasetGait DatasetPerson RecognitionGender RecognitionRGB-D SensorsGRIDDSSeveral approaches based on human gait have been proposed in the literature, either for medical research reasons, smart surveillance, human-machine interaction, or other purposes, whose validation highly depends on the access to common input data through available datasets, enabling a coherent performance comparison. The advent of depth sensors leveraged the emergence of novel approaches and, consequently, the usage of new datasets. In this work we present the GRIDDS - A Gait Recognition Image and Depth Dataset, a new and publicly available gait depth-based dataset that can be used mostly for person and gender recognition purposes.2023-01-06T18:40:24Z2019-01-01T00:00:00Z20192022-11-02T16:56:26Zbook partinfo:eu-repo/semantics/publishedVersionapplication/pdfhttp://hdl.handle.net/20.500.11960/3099eng978-3-030-32039-3978-3-030-32040-92212-94132212-939110.1007/978-3-030-32040-9_36metadata only accessinfo:eu-repo/semantics/openAccessNunes, JoãoMoreira, Pedro MiguelTavares, João Manuel R. S.reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2024-04-11T08:09:37Zoai:repositorio.ipvc.pt:20.500.11960/3099Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T13:27:45.744705Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse |
| dc.title.none.fl_str_mv |
GRIDDS - a gait recognition image and depth dataset |
| title |
GRIDDS - a gait recognition image and depth dataset |
| spellingShingle |
GRIDDS - a gait recognition image and depth dataset Nunes, João Gait Dataset Person Recognition Gender Recognition RGB-D Sensors GRIDDS |
| title_short |
GRIDDS - a gait recognition image and depth dataset |
| title_full |
GRIDDS - a gait recognition image and depth dataset |
| title_fullStr |
GRIDDS - a gait recognition image and depth dataset |
| title_full_unstemmed |
GRIDDS - a gait recognition image and depth dataset |
| title_sort |
GRIDDS - a gait recognition image and depth dataset |
| author |
Nunes, João |
| author_facet |
Nunes, João Moreira, Pedro Miguel Tavares, João Manuel R. S. |
| author_role |
author |
| author2 |
Moreira, Pedro Miguel Tavares, João Manuel R. S. |
| author2_role |
author author |
| dc.contributor.author.fl_str_mv |
Nunes, João Moreira, Pedro Miguel Tavares, João Manuel R. S. |
| dc.subject.por.fl_str_mv |
Gait Dataset Person Recognition Gender Recognition RGB-D Sensors GRIDDS |
| topic |
Gait Dataset Person Recognition Gender Recognition RGB-D Sensors GRIDDS |
| description |
Several approaches based on human gait have been proposed in the literature, either for medical research reasons, smart surveillance, human-machine interaction, or other purposes, whose validation highly depends on the access to common input data through available datasets, enabling a coherent performance comparison. The advent of depth sensors leveraged the emergence of novel approaches and, consequently, the usage of new datasets. In this work we present the GRIDDS - A Gait Recognition Image and Depth Dataset, a new and publicly available gait depth-based dataset that can be used mostly for person and gender recognition purposes. |
| publishDate |
2019 |
| dc.date.none.fl_str_mv |
2019-01-01T00:00:00Z 2019 2022-11-02T16:56:26Z 2023-01-06T18:40:24Z |
| dc.type.driver.fl_str_mv |
book part |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| status_str |
publishedVersion |
| dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/20.500.11960/3099 |
| url |
http://hdl.handle.net/20.500.11960/3099 |
| dc.language.iso.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
978-3-030-32039-3 978-3-030-32040-9 2212-9413 2212-9391 10.1007/978-3-030-32040-9_36 |
| dc.rights.driver.fl_str_mv |
metadata only access info:eu-repo/semantics/openAccess |
| rights_invalid_str_mv |
metadata only access |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.source.none.fl_str_mv |
reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia instacron:RCAAP |
| instname_str |
FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
| instacron_str |
RCAAP |
| institution |
RCAAP |
| reponame_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| collection |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| repository.name.fl_str_mv |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
| repository.mail.fl_str_mv |
info@rcaap.pt |
| _version_ |
1833593773784825856 |