Export Ready — 

On the eigenstructure of hermitian Toeplitz matrices with prescribed eigenpairs

Bibliographic Details
Main Author: Liu Zhongyun
Publication Date: 2009
Other Authors: Li Jing, Zhang Yulin
Language: eng
Source: Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
Download full: http://hdl.handle.net/1822/16505
Summary: In this paper we concern the spectral properties of hermitian Toeplitz matrices. Based on the fact that every centrohermitian matrix can be reduced to a real matrix by a simple similarity transformation, we first consider the eigenstructure of hermitian Toeplitz matrices and then discuss a related inverse eigenproblem. We show that the dimension of the subspace of hermitian Toeplitz matrices with two given eigenvectors is at least two and independent of the size of the matrix, the solution of the inverse hermitian Toeplitz eigenproblem with two given eigenpairs is unique.
id RCAP_bc1938f3950fbadb9bf567deb03573fc
oai_identifier_str oai:repositorium.sdum.uminho.pt:1822/16505
network_acronym_str RCAP
network_name_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository_id_str https://opendoar.ac.uk/repository/7160
spelling On the eigenstructure of hermitian Toeplitz matrices with prescribed eigenpairsHermitian Toeplitz matrixEigenstructureCentrohermitian matrixInverse eigenproblemsScience & TechnologyIn this paper we concern the spectral properties of hermitian Toeplitz matrices. Based on the fact that every centrohermitian matrix can be reduced to a real matrix by a simple similarity transformation, we first consider the eigenstructure of hermitian Toeplitz matrices and then discuss a related inverse eigenproblem. We show that the dimension of the subspace of hermitian Toeplitz matrices with two given eigenvectors is at least two and independent of the size of the matrix, the solution of the inverse hermitian Toeplitz eigenproblem with two given eigenpairs is unique.FCTWorld Publishing CorporationUniversidade do MinhoLiu ZhongyunLi JingZhang Yulin20092009-01-01T00:00:00Zconference paperinfo:eu-repo/semantics/publishedVersionapplication/pdfhttp://hdl.handle.net/1822/16505eng9787510005480info:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2024-05-11T05:51:33Zoai:repositorium.sdum.uminho.pt:1822/16505Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T15:32:37.427937Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse
dc.title.none.fl_str_mv On the eigenstructure of hermitian Toeplitz matrices with prescribed eigenpairs
title On the eigenstructure of hermitian Toeplitz matrices with prescribed eigenpairs
spellingShingle On the eigenstructure of hermitian Toeplitz matrices with prescribed eigenpairs
Liu Zhongyun
Hermitian Toeplitz matrix
Eigenstructure
Centrohermitian matrix
Inverse eigenproblems
Science & Technology
title_short On the eigenstructure of hermitian Toeplitz matrices with prescribed eigenpairs
title_full On the eigenstructure of hermitian Toeplitz matrices with prescribed eigenpairs
title_fullStr On the eigenstructure of hermitian Toeplitz matrices with prescribed eigenpairs
title_full_unstemmed On the eigenstructure of hermitian Toeplitz matrices with prescribed eigenpairs
title_sort On the eigenstructure of hermitian Toeplitz matrices with prescribed eigenpairs
author Liu Zhongyun
author_facet Liu Zhongyun
Li Jing
Zhang Yulin
author_role author
author2 Li Jing
Zhang Yulin
author2_role author
author
dc.contributor.none.fl_str_mv Universidade do Minho
dc.contributor.author.fl_str_mv Liu Zhongyun
Li Jing
Zhang Yulin
dc.subject.por.fl_str_mv Hermitian Toeplitz matrix
Eigenstructure
Centrohermitian matrix
Inverse eigenproblems
Science & Technology
topic Hermitian Toeplitz matrix
Eigenstructure
Centrohermitian matrix
Inverse eigenproblems
Science & Technology
description In this paper we concern the spectral properties of hermitian Toeplitz matrices. Based on the fact that every centrohermitian matrix can be reduced to a real matrix by a simple similarity transformation, we first consider the eigenstructure of hermitian Toeplitz matrices and then discuss a related inverse eigenproblem. We show that the dimension of the subspace of hermitian Toeplitz matrices with two given eigenvectors is at least two and independent of the size of the matrix, the solution of the inverse hermitian Toeplitz eigenproblem with two given eigenpairs is unique.
publishDate 2009
dc.date.none.fl_str_mv 2009
2009-01-01T00:00:00Z
dc.type.driver.fl_str_mv conference paper
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/1822/16505
url http://hdl.handle.net/1822/16505
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 9787510005480
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv World Publishing Corporation
publisher.none.fl_str_mv World Publishing Corporation
dc.source.none.fl_str_mv reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron:RCAAP
instname_str FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron_str RCAAP
institution RCAAP
reponame_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
collection Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository.name.fl_str_mv Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
repository.mail.fl_str_mv info@rcaap.pt
_version_ 1833595381484617728