On the eigenstructure of hermitian Toeplitz matrices with prescribed eigenpairs
Main Author: | |
---|---|
Publication Date: | 2009 |
Other Authors: | , |
Language: | eng |
Source: | Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
Download full: | http://hdl.handle.net/1822/16505 |
Summary: | In this paper we concern the spectral properties of hermitian Toeplitz matrices. Based on the fact that every centrohermitian matrix can be reduced to a real matrix by a simple similarity transformation, we first consider the eigenstructure of hermitian Toeplitz matrices and then discuss a related inverse eigenproblem. We show that the dimension of the subspace of hermitian Toeplitz matrices with two given eigenvectors is at least two and independent of the size of the matrix, the solution of the inverse hermitian Toeplitz eigenproblem with two given eigenpairs is unique. |
id |
RCAP_bc1938f3950fbadb9bf567deb03573fc |
---|---|
oai_identifier_str |
oai:repositorium.sdum.uminho.pt:1822/16505 |
network_acronym_str |
RCAP |
network_name_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository_id_str |
https://opendoar.ac.uk/repository/7160 |
spelling |
On the eigenstructure of hermitian Toeplitz matrices with prescribed eigenpairsHermitian Toeplitz matrixEigenstructureCentrohermitian matrixInverse eigenproblemsScience & TechnologyIn this paper we concern the spectral properties of hermitian Toeplitz matrices. Based on the fact that every centrohermitian matrix can be reduced to a real matrix by a simple similarity transformation, we first consider the eigenstructure of hermitian Toeplitz matrices and then discuss a related inverse eigenproblem. We show that the dimension of the subspace of hermitian Toeplitz matrices with two given eigenvectors is at least two and independent of the size of the matrix, the solution of the inverse hermitian Toeplitz eigenproblem with two given eigenpairs is unique.FCTWorld Publishing CorporationUniversidade do MinhoLiu ZhongyunLi JingZhang Yulin20092009-01-01T00:00:00Zconference paperinfo:eu-repo/semantics/publishedVersionapplication/pdfhttp://hdl.handle.net/1822/16505eng9787510005480info:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2024-05-11T05:51:33Zoai:repositorium.sdum.uminho.pt:1822/16505Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T15:32:37.427937Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse |
dc.title.none.fl_str_mv |
On the eigenstructure of hermitian Toeplitz matrices with prescribed eigenpairs |
title |
On the eigenstructure of hermitian Toeplitz matrices with prescribed eigenpairs |
spellingShingle |
On the eigenstructure of hermitian Toeplitz matrices with prescribed eigenpairs Liu Zhongyun Hermitian Toeplitz matrix Eigenstructure Centrohermitian matrix Inverse eigenproblems Science & Technology |
title_short |
On the eigenstructure of hermitian Toeplitz matrices with prescribed eigenpairs |
title_full |
On the eigenstructure of hermitian Toeplitz matrices with prescribed eigenpairs |
title_fullStr |
On the eigenstructure of hermitian Toeplitz matrices with prescribed eigenpairs |
title_full_unstemmed |
On the eigenstructure of hermitian Toeplitz matrices with prescribed eigenpairs |
title_sort |
On the eigenstructure of hermitian Toeplitz matrices with prescribed eigenpairs |
author |
Liu Zhongyun |
author_facet |
Liu Zhongyun Li Jing Zhang Yulin |
author_role |
author |
author2 |
Li Jing Zhang Yulin |
author2_role |
author author |
dc.contributor.none.fl_str_mv |
Universidade do Minho |
dc.contributor.author.fl_str_mv |
Liu Zhongyun Li Jing Zhang Yulin |
dc.subject.por.fl_str_mv |
Hermitian Toeplitz matrix Eigenstructure Centrohermitian matrix Inverse eigenproblems Science & Technology |
topic |
Hermitian Toeplitz matrix Eigenstructure Centrohermitian matrix Inverse eigenproblems Science & Technology |
description |
In this paper we concern the spectral properties of hermitian Toeplitz matrices. Based on the fact that every centrohermitian matrix can be reduced to a real matrix by a simple similarity transformation, we first consider the eigenstructure of hermitian Toeplitz matrices and then discuss a related inverse eigenproblem. We show that the dimension of the subspace of hermitian Toeplitz matrices with two given eigenvectors is at least two and independent of the size of the matrix, the solution of the inverse hermitian Toeplitz eigenproblem with two given eigenpairs is unique. |
publishDate |
2009 |
dc.date.none.fl_str_mv |
2009 2009-01-01T00:00:00Z |
dc.type.driver.fl_str_mv |
conference paper |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/1822/16505 |
url |
http://hdl.handle.net/1822/16505 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
9787510005480 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
World Publishing Corporation |
publisher.none.fl_str_mv |
World Publishing Corporation |
dc.source.none.fl_str_mv |
reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia instacron:RCAAP |
instname_str |
FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
collection |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository.name.fl_str_mv |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
repository.mail.fl_str_mv |
info@rcaap.pt |
_version_ |
1833595381484617728 |