Understanding how junction resistances impact the conduction mechanism in nano-networks
Main Author: | |
---|---|
Publication Date: | 2024 |
Other Authors: | , , , , , , , , , , , , , , , , , , , |
Format: | Article |
Language: | eng |
Source: | Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
Download full: | http://hdl.handle.net/10362/179277 |
Summary: | Funding Information: We acknowledge funding from the European Union through the ERC grant FUTUREPRINT, the Graphene Flagship and the Horizon Europe project 2D-PRINTABLE (GA-101135196). We have also received support from the Science Foundation Ireland (SFI) funded centre AMBER (SFI/12/ RC/2278_P2) and availed of the facilities of the SFI-funded advanced microscopy laboratory (AML), additive research laboratory (ARL) and iCRAG. A.G.K. acknowledges funding from the Marie Skłodowska-Curie Postdoctoral Fellowship “NanoHarvest” (Proposal Number: 101107032). T.C. acknowledges funding from a Marie Skłodowska-Curie Individual Fellowship “MOVE” (grant number 101030735, project number 211395, and award number 16883). L.D appreciates support from Science Foundation Ireland (SFI) (18/EPSRC-CDT/3581). E.Ca appreciates support from the Irish Research Council (IRC) (GOIPG/2020/1051). J.M. acknowledges his Margarita Salas fellowship from the Spanish Ministry of Universities. A.M. acknowledges support from the European Research Council Starting Grant POL_2D_PHYSICS (101075821) and the Austrian Science Fund Y1298-N START Prize. NY is funded by the SFI US-Ireland project (21/US/3788). G.G., S.K. and L.D.A.S. received funding from the Netherlands Organisation for Scientific Research (NWO) in the frame- work of the Materials for sustainability and from the Ministry of Economic Affairs in the framework of the PPP allowance. Z.S. was supported by ERC-CZ program (project LL2101) from Ministry of Education Youth and Sports (MEYS) and acknowledges laser infrastructure from project reg. No. CZ.02.1.01/0.0/0.0/15_003/0000444 financed by the EFRR. We thank Prof. Matthias Moebius for useful discussions. Publisher Copyright: © The Author(s) 2024. |
id |
RCAP_b854a79d20406aea09a0eca9356e35a9 |
---|---|
oai_identifier_str |
oai:run.unl.pt:10362/179277 |
network_acronym_str |
RCAP |
network_name_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository_id_str |
https://opendoar.ac.uk/repository/7160 |
spelling |
Understanding how junction resistances impact the conduction mechanism in nano-networksChemistry(all)Biochemistry, Genetics and Molecular Biology(all)Physics and Astronomy(all)Funding Information: We acknowledge funding from the European Union through the ERC grant FUTUREPRINT, the Graphene Flagship and the Horizon Europe project 2D-PRINTABLE (GA-101135196). We have also received support from the Science Foundation Ireland (SFI) funded centre AMBER (SFI/12/ RC/2278_P2) and availed of the facilities of the SFI-funded advanced microscopy laboratory (AML), additive research laboratory (ARL) and iCRAG. A.G.K. acknowledges funding from the Marie Skłodowska-Curie Postdoctoral Fellowship “NanoHarvest” (Proposal Number: 101107032). T.C. acknowledges funding from a Marie Skłodowska-Curie Individual Fellowship “MOVE” (grant number 101030735, project number 211395, and award number 16883). L.D appreciates support from Science Foundation Ireland (SFI) (18/EPSRC-CDT/3581). E.Ca appreciates support from the Irish Research Council (IRC) (GOIPG/2020/1051). J.M. acknowledges his Margarita Salas fellowship from the Spanish Ministry of Universities. A.M. acknowledges support from the European Research Council Starting Grant POL_2D_PHYSICS (101075821) and the Austrian Science Fund Y1298-N START Prize. NY is funded by the SFI US-Ireland project (21/US/3788). G.G., S.K. and L.D.A.S. received funding from the Netherlands Organisation for Scientific Research (NWO) in the frame- work of the Materials for sustainability and from the Ministry of Economic Affairs in the framework of the PPP allowance. Z.S. was supported by ERC-CZ program (project LL2101) from Ministry of Education Youth and Sports (MEYS) and acknowledges laser infrastructure from project reg. No. CZ.02.1.01/0.0/0.0/15_003/0000444 financed by the EFRR. We thank Prof. Matthias Moebius for useful discussions. Publisher Copyright: © The Author(s) 2024.Networks of nanowires, nanotubes, and nanosheets are important for many applications in printed electronics. However, the network conductivity and mobility are usually limited by the resistance between the particles, often referred to as the junction resistance. Minimising the junction resistance has proven to be challenging, partly because it is difficult to measure. Here, we develop a simple model for electrical conduction in networks of 1D or 2D nanomaterials that allows us to extract junction and nanoparticle resistances from particle-size-dependent DC network resistivity data. We find junction resistances in porous networks to scale with nanoparticle resistivity and vary from 5 Ω for silver nanosheets to 24 GΩ for WS2 nanosheets. Moreover, our model allows junction and nanoparticle resistances to be obtained simultaneously from AC impedance spectra of semiconducting nanosheet networks. Through our model, we use the impedance data to directly link the high mobility of aligned networks of electrochemically exfoliated MoS2 nanosheets (≈ 7 cm2 V−1 s−1) to low junction resistances of ∼2.3 MΩ. Temperature-dependent impedance measurements also allow us to comprehensively investigate transport mechanisms within the network and quantitatively differentiate intra-nanosheet phonon-limited bandlike transport from inter-nanosheet hopping.CENIMAT-i3N - Centro de Investigação de Materiais (Lab. Associado I3N)Faculdade de Ciências e Tecnologia (FCT)RUNGabbett, CianKelly, Adam G.Coleman, EmmetDoolan, LukeCarey, TianSynnatschke, KevinLiu, ShixinDawson, AnthonyO’Suilleabhain, DomhnallMunuera, JoseCaffrey, EoinBoland, John B.Sofer, ZdeněkGhosh, GoutamKinge, SachinSiebbeles, Laurens D.A.Yadav, NeelamVij, Jagdish K.Aslam, Muhammad AwaisMatkovic, AleksandarColeman, Jonathan N.2025-02-18T21:19:58Z2024-122024-12-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10362/179277eng2041-1723PURE: 106562863https://doi.org/10.1038/s41467-024-48614-5info:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2025-02-24T01:48:57Zoai:run.unl.pt:10362/179277Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T20:40:11.763908Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse |
dc.title.none.fl_str_mv |
Understanding how junction resistances impact the conduction mechanism in nano-networks |
title |
Understanding how junction resistances impact the conduction mechanism in nano-networks |
spellingShingle |
Understanding how junction resistances impact the conduction mechanism in nano-networks Gabbett, Cian Chemistry(all) Biochemistry, Genetics and Molecular Biology(all) Physics and Astronomy(all) |
title_short |
Understanding how junction resistances impact the conduction mechanism in nano-networks |
title_full |
Understanding how junction resistances impact the conduction mechanism in nano-networks |
title_fullStr |
Understanding how junction resistances impact the conduction mechanism in nano-networks |
title_full_unstemmed |
Understanding how junction resistances impact the conduction mechanism in nano-networks |
title_sort |
Understanding how junction resistances impact the conduction mechanism in nano-networks |
author |
Gabbett, Cian |
author_facet |
Gabbett, Cian Kelly, Adam G. Coleman, Emmet Doolan, Luke Carey, Tian Synnatschke, Kevin Liu, Shixin Dawson, Anthony O’Suilleabhain, Domhnall Munuera, Jose Caffrey, Eoin Boland, John B. Sofer, Zdeněk Ghosh, Goutam Kinge, Sachin Siebbeles, Laurens D.A. Yadav, Neelam Vij, Jagdish K. Aslam, Muhammad Awais Matkovic, Aleksandar Coleman, Jonathan N. |
author_role |
author |
author2 |
Kelly, Adam G. Coleman, Emmet Doolan, Luke Carey, Tian Synnatschke, Kevin Liu, Shixin Dawson, Anthony O’Suilleabhain, Domhnall Munuera, Jose Caffrey, Eoin Boland, John B. Sofer, Zdeněk Ghosh, Goutam Kinge, Sachin Siebbeles, Laurens D.A. Yadav, Neelam Vij, Jagdish K. Aslam, Muhammad Awais Matkovic, Aleksandar Coleman, Jonathan N. |
author2_role |
author author author author author author author author author author author author author author author author author author author author |
dc.contributor.none.fl_str_mv |
CENIMAT-i3N - Centro de Investigação de Materiais (Lab. Associado I3N) Faculdade de Ciências e Tecnologia (FCT) RUN |
dc.contributor.author.fl_str_mv |
Gabbett, Cian Kelly, Adam G. Coleman, Emmet Doolan, Luke Carey, Tian Synnatschke, Kevin Liu, Shixin Dawson, Anthony O’Suilleabhain, Domhnall Munuera, Jose Caffrey, Eoin Boland, John B. Sofer, Zdeněk Ghosh, Goutam Kinge, Sachin Siebbeles, Laurens D.A. Yadav, Neelam Vij, Jagdish K. Aslam, Muhammad Awais Matkovic, Aleksandar Coleman, Jonathan N. |
dc.subject.por.fl_str_mv |
Chemistry(all) Biochemistry, Genetics and Molecular Biology(all) Physics and Astronomy(all) |
topic |
Chemistry(all) Biochemistry, Genetics and Molecular Biology(all) Physics and Astronomy(all) |
description |
Funding Information: We acknowledge funding from the European Union through the ERC grant FUTUREPRINT, the Graphene Flagship and the Horizon Europe project 2D-PRINTABLE (GA-101135196). We have also received support from the Science Foundation Ireland (SFI) funded centre AMBER (SFI/12/ RC/2278_P2) and availed of the facilities of the SFI-funded advanced microscopy laboratory (AML), additive research laboratory (ARL) and iCRAG. A.G.K. acknowledges funding from the Marie Skłodowska-Curie Postdoctoral Fellowship “NanoHarvest” (Proposal Number: 101107032). T.C. acknowledges funding from a Marie Skłodowska-Curie Individual Fellowship “MOVE” (grant number 101030735, project number 211395, and award number 16883). L.D appreciates support from Science Foundation Ireland (SFI) (18/EPSRC-CDT/3581). E.Ca appreciates support from the Irish Research Council (IRC) (GOIPG/2020/1051). J.M. acknowledges his Margarita Salas fellowship from the Spanish Ministry of Universities. A.M. acknowledges support from the European Research Council Starting Grant POL_2D_PHYSICS (101075821) and the Austrian Science Fund Y1298-N START Prize. NY is funded by the SFI US-Ireland project (21/US/3788). G.G., S.K. and L.D.A.S. received funding from the Netherlands Organisation for Scientific Research (NWO) in the frame- work of the Materials for sustainability and from the Ministry of Economic Affairs in the framework of the PPP allowance. Z.S. was supported by ERC-CZ program (project LL2101) from Ministry of Education Youth and Sports (MEYS) and acknowledges laser infrastructure from project reg. No. CZ.02.1.01/0.0/0.0/15_003/0000444 financed by the EFRR. We thank Prof. Matthias Moebius for useful discussions. Publisher Copyright: © The Author(s) 2024. |
publishDate |
2024 |
dc.date.none.fl_str_mv |
2024-12 2024-12-01T00:00:00Z 2025-02-18T21:19:58Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10362/179277 |
url |
http://hdl.handle.net/10362/179277 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
2041-1723 PURE: 106562863 https://doi.org/10.1038/s41467-024-48614-5 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia instacron:RCAAP |
instname_str |
FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
collection |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository.name.fl_str_mv |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
repository.mail.fl_str_mv |
info@rcaap.pt |
_version_ |
1833598785205305344 |