Network Slicing: Joint Optimization of Admission Control, Resource Attribution and Traffic Routing

Bibliographic Details
Main Author: Gil, Santiago Fidalgo Riveiro
Publication Date: 2023
Format: Master thesis
Language: eng
Source: Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
Download full: http://hdl.handle.net/10362/173164
Summary: The emergence of 5G networks and networks beyond 5G has brought about the need to dynamically and flexibly share physical infrastructure among multiple virtual networks supporting various services. This requirement, coupled with the development of technolo- gies such as Software-Defined Networks (SDNs) and Network Function Virtualization (NFV), paved the way for the realization of the concept of network slicing, which involves segmenting the physical network into multiple virtual networks. Effective mechanisms for slice admission and traffic routing within the physical network are essential to op- timize resource utilization, meet quality of service (QoS) requirements, and ensure the efficient operation of various slices. This thesis presents a study of the application of Deep Reinforcement Learning (DRL) algorithms, specifically the Deep Q-Network (DQN) and Dueling Deep Q-Network (Dueling DQN) algorithms, to address the joint problem of optimizing slice admission and traffic routing in the network. Our research encompasses the development and evaluation of DQN-based solutions, focusing primarily on three developed algorithms, with a fourth serving as a control algorithm. The first is a DQN algorithm with a single neural network for joint action (routing and admission), the second is a DQN algorithm with two neural networks, considering routing and admission actions separately, and the third is the Dueling DQN algorithm with joint action. Finally, we have a random choice algorithm primarily to assess the efficiency of DRL in these scenarios. To provide context for the results, a comparative analysis is conducted between the proposed methods and a solution that considers only the admission problem with simple routing. Our results reveal that there is a benefit in considering routing alongside slice ad- mission, with DRL agents that consider joint action yielding better results than those considering two independent actions. Among the algorithms used, the Dueling DQN, with its separation of value and advantage networks, exhibited superior performance compared to the simple DQN approach.
id RCAP_1d2097ecd38f374ce851c45405477a8c
oai_identifier_str oai:run.unl.pt:10362/173164
network_acronym_str RCAP
network_name_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository_id_str https://opendoar.ac.uk/repository/7160
spelling Network Slicing: Joint Optimization of Admission Control, Resource Attribution and Traffic RoutingNetwork SlicingDRLAdmission ControlTraffic RoutingDomínio/Área Científica::Engenharia e Tecnologia::Engenharia Eletrotécnica, Eletrónica e InformáticaThe emergence of 5G networks and networks beyond 5G has brought about the need to dynamically and flexibly share physical infrastructure among multiple virtual networks supporting various services. This requirement, coupled with the development of technolo- gies such as Software-Defined Networks (SDNs) and Network Function Virtualization (NFV), paved the way for the realization of the concept of network slicing, which involves segmenting the physical network into multiple virtual networks. Effective mechanisms for slice admission and traffic routing within the physical network are essential to op- timize resource utilization, meet quality of service (QoS) requirements, and ensure the efficient operation of various slices. This thesis presents a study of the application of Deep Reinforcement Learning (DRL) algorithms, specifically the Deep Q-Network (DQN) and Dueling Deep Q-Network (Dueling DQN) algorithms, to address the joint problem of optimizing slice admission and traffic routing in the network. Our research encompasses the development and evaluation of DQN-based solutions, focusing primarily on three developed algorithms, with a fourth serving as a control algorithm. The first is a DQN algorithm with a single neural network for joint action (routing and admission), the second is a DQN algorithm with two neural networks, considering routing and admission actions separately, and the third is the Dueling DQN algorithm with joint action. Finally, we have a random choice algorithm primarily to assess the efficiency of DRL in these scenarios. To provide context for the results, a comparative analysis is conducted between the proposed methods and a solution that considers only the admission problem with simple routing. Our results reveal that there is a benefit in considering routing alongside slice ad- mission, with DRL agents that consider joint action yielding better results than those considering two independent actions. Among the algorithms used, the Dueling DQN, with its separation of value and advantage networks, exhibited superior performance compared to the simple DQN approach.O surgimento das redes 5G e das redes para além do 5G veio trazer a necessidade de partilhar de forma dinâmica e flexível a infraestrutura física entre várias redes virtuais que suportam os vários serviços. Esta necessidade juntamente com o desenvolvimento de tecnologias como as redes definidas por software (SDNs) e a virtualização de funções de rede (NFV) abriram caminho a concretização do conceito de network slicing, que se baseia na segmentação da rede física em várias redes virtuais. Mecanismos eficazes de admissão de slices e de encaminhamento do seu tráfego na rede física são essenciais para otimizar a utilização de recursos, cumprir os requisitos de qualidade de serviço (QoS) e garantir o funcionamento eficiente das várias slices. Esta tese apresenta uma estudo da aplicação de algoritmos de Deep Reinforcement Learning (DRL), nomeadamente os algoritmos Deep Q-Network (DQN) e Dueling Deep Q-Network (Dueling DQN) para a resolução do problema conjunto da otimização da admissão de slices e do encaminhamento do seu tráfego na rede. A nossa investigação abrange o desenvolvimento e a avaliação de soluções baseadas em DQN, com foco principal em três algoritmos desenvolvidos, com um quarto a atuar como algoritmo de controlo. O primeiro é um algoritmo DQN com uma única rede neural de ação conjunta (encaminhamento e admissão) o segundo é um algoritmo DQN com duas redes neurais onde as ações de encaminhamento e admissão são consideradas em separado, e o terceiro é o algoritmo Dueling DQN com ação conjunta. Por fim, temos um algoritmo de escolha aleatória para, principalmente, comprovar a eficiência de DRL nestes cenários. Para contextualizar os resultados, é realizada uma análise comparativa entre os mé- todos propostos e uma solução que considera apenas o problema da admissão com encaminhamento simples. Os nossos resultados revelam que há um ganho em considerar o encaminhamento em conjunto com a admissão de slices, sendo que os agentes DRL que consideram uma ação conjunta obtêm melhores resultados do que os que consideram duas ações independentes, entre os algoritmos utilizados o Dueling DQN, com a sua separação das redes de value e advantage, apresentou uma melhor performance face ao DQN simples.Amaral, PedroRUNGil, Santiago Fidalgo Riveiro2024-10-08T13:37:01Z2023-102023-10-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10362/173164enginfo:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2024-10-14T01:38:57Zoai:run.unl.pt:10362/173164Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T18:58:54.879031Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse
dc.title.none.fl_str_mv Network Slicing: Joint Optimization of Admission Control, Resource Attribution and Traffic Routing
title Network Slicing: Joint Optimization of Admission Control, Resource Attribution and Traffic Routing
spellingShingle Network Slicing: Joint Optimization of Admission Control, Resource Attribution and Traffic Routing
Gil, Santiago Fidalgo Riveiro
Network Slicing
DRL
Admission Control
Traffic Routing
Domínio/Área Científica::Engenharia e Tecnologia::Engenharia Eletrotécnica, Eletrónica e Informática
title_short Network Slicing: Joint Optimization of Admission Control, Resource Attribution and Traffic Routing
title_full Network Slicing: Joint Optimization of Admission Control, Resource Attribution and Traffic Routing
title_fullStr Network Slicing: Joint Optimization of Admission Control, Resource Attribution and Traffic Routing
title_full_unstemmed Network Slicing: Joint Optimization of Admission Control, Resource Attribution and Traffic Routing
title_sort Network Slicing: Joint Optimization of Admission Control, Resource Attribution and Traffic Routing
author Gil, Santiago Fidalgo Riveiro
author_facet Gil, Santiago Fidalgo Riveiro
author_role author
dc.contributor.none.fl_str_mv Amaral, Pedro
RUN
dc.contributor.author.fl_str_mv Gil, Santiago Fidalgo Riveiro
dc.subject.por.fl_str_mv Network Slicing
DRL
Admission Control
Traffic Routing
Domínio/Área Científica::Engenharia e Tecnologia::Engenharia Eletrotécnica, Eletrónica e Informática
topic Network Slicing
DRL
Admission Control
Traffic Routing
Domínio/Área Científica::Engenharia e Tecnologia::Engenharia Eletrotécnica, Eletrónica e Informática
description The emergence of 5G networks and networks beyond 5G has brought about the need to dynamically and flexibly share physical infrastructure among multiple virtual networks supporting various services. This requirement, coupled with the development of technolo- gies such as Software-Defined Networks (SDNs) and Network Function Virtualization (NFV), paved the way for the realization of the concept of network slicing, which involves segmenting the physical network into multiple virtual networks. Effective mechanisms for slice admission and traffic routing within the physical network are essential to op- timize resource utilization, meet quality of service (QoS) requirements, and ensure the efficient operation of various slices. This thesis presents a study of the application of Deep Reinforcement Learning (DRL) algorithms, specifically the Deep Q-Network (DQN) and Dueling Deep Q-Network (Dueling DQN) algorithms, to address the joint problem of optimizing slice admission and traffic routing in the network. Our research encompasses the development and evaluation of DQN-based solutions, focusing primarily on three developed algorithms, with a fourth serving as a control algorithm. The first is a DQN algorithm with a single neural network for joint action (routing and admission), the second is a DQN algorithm with two neural networks, considering routing and admission actions separately, and the third is the Dueling DQN algorithm with joint action. Finally, we have a random choice algorithm primarily to assess the efficiency of DRL in these scenarios. To provide context for the results, a comparative analysis is conducted between the proposed methods and a solution that considers only the admission problem with simple routing. Our results reveal that there is a benefit in considering routing alongside slice ad- mission, with DRL agents that consider joint action yielding better results than those considering two independent actions. Among the algorithms used, the Dueling DQN, with its separation of value and advantage networks, exhibited superior performance compared to the simple DQN approach.
publishDate 2023
dc.date.none.fl_str_mv 2023-10
2023-10-01T00:00:00Z
2024-10-08T13:37:01Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10362/173164
url http://hdl.handle.net/10362/173164
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron:RCAAP
instname_str FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron_str RCAAP
institution RCAAP
reponame_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
collection Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository.name.fl_str_mv Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
repository.mail.fl_str_mv info@rcaap.pt
_version_ 1833597794041987072