Generalising KAT to verify weighted computations
Autor(a) principal: | |
---|---|
Data de Publicação: | 2019 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
Texto Completo: | http://hdl.handle.net/10773/27224 |
Resumo: | Kleene algebra with tests (KAT) was introduced as an algebraic structure to model and reason about classic imperative programs, i.e. sequences of discrete transitions guarded by Boolean tests. This paper introduces two generalisations of this structure able to express programs as weighted transitions and tests with outcomes in non necessarily bivalent truth spaces: graded Kleene algebra with tests (GKAT) and a variant where tests are also idempotent (I-GKAT). In this context, and in analogy to Kozen’s encoding of Propositional Hoare Logic (PHL) in KAT we discuss the encoding of a graded PHL in I-GKAT and of its while-free fragment in GKAT. Moreover, to establish semantics for these structures four new algebras are defined: F SET (T ), F REL(K, T ) and F LANG(K, T ) over complete residuated lattices K and T , and M(n, A) over a GKAT or I-GKAT A. As a final exercise, the paper discusses some program equivalence proofs in a graded context. |
id |
RCAP_b198641d2dec4e79b47a502be51e5cd1 |
---|---|
oai_identifier_str |
oai:ria.ua.pt:10773/27224 |
network_acronym_str |
RCAP |
network_name_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository_id_str |
https://opendoar.ac.uk/repository/7160 |
spelling |
Generalising KAT to verify weighted computationsKleene algebraHoare logicGraded testsFuzzy relationsPrograms verificationKleene algebra with tests (KAT) was introduced as an algebraic structure to model and reason about classic imperative programs, i.e. sequences of discrete transitions guarded by Boolean tests. This paper introduces two generalisations of this structure able to express programs as weighted transitions and tests with outcomes in non necessarily bivalent truth spaces: graded Kleene algebra with tests (GKAT) and a variant where tests are also idempotent (I-GKAT). In this context, and in analogy to Kozen’s encoding of Propositional Hoare Logic (PHL) in KAT we discuss the encoding of a graded PHL in I-GKAT and of its while-free fragment in GKAT. Moreover, to establish semantics for these structures four new algebras are defined: F SET (T ), F REL(K, T ) and F LANG(K, T ) over complete residuated lattices K and T , and M(n, A) over a GKAT or I-GKAT A. As a final exercise, the paper discusses some program equivalence proofs in a graded context.Alexandru Ioan Cuza University of Iasi2020-01-03T17:48:10Z2019-01-01T00:00:00Z2019info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10773/27224eng1843-812110.7561/SACS.2019.2.141Gomes, LeandroMadeira, AlexandreBarbosa, Luis S.info:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2024-05-06T04:22:58Zoai:ria.ua.pt:10773/27224Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T14:06:35.988568Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse |
dc.title.none.fl_str_mv |
Generalising KAT to verify weighted computations |
title |
Generalising KAT to verify weighted computations |
spellingShingle |
Generalising KAT to verify weighted computations Gomes, Leandro Kleene algebra Hoare logic Graded tests Fuzzy relations Programs verification |
title_short |
Generalising KAT to verify weighted computations |
title_full |
Generalising KAT to verify weighted computations |
title_fullStr |
Generalising KAT to verify weighted computations |
title_full_unstemmed |
Generalising KAT to verify weighted computations |
title_sort |
Generalising KAT to verify weighted computations |
author |
Gomes, Leandro |
author_facet |
Gomes, Leandro Madeira, Alexandre Barbosa, Luis S. |
author_role |
author |
author2 |
Madeira, Alexandre Barbosa, Luis S. |
author2_role |
author author |
dc.contributor.author.fl_str_mv |
Gomes, Leandro Madeira, Alexandre Barbosa, Luis S. |
dc.subject.por.fl_str_mv |
Kleene algebra Hoare logic Graded tests Fuzzy relations Programs verification |
topic |
Kleene algebra Hoare logic Graded tests Fuzzy relations Programs verification |
description |
Kleene algebra with tests (KAT) was introduced as an algebraic structure to model and reason about classic imperative programs, i.e. sequences of discrete transitions guarded by Boolean tests. This paper introduces two generalisations of this structure able to express programs as weighted transitions and tests with outcomes in non necessarily bivalent truth spaces: graded Kleene algebra with tests (GKAT) and a variant where tests are also idempotent (I-GKAT). In this context, and in analogy to Kozen’s encoding of Propositional Hoare Logic (PHL) in KAT we discuss the encoding of a graded PHL in I-GKAT and of its while-free fragment in GKAT. Moreover, to establish semantics for these structures four new algebras are defined: F SET (T ), F REL(K, T ) and F LANG(K, T ) over complete residuated lattices K and T , and M(n, A) over a GKAT or I-GKAT A. As a final exercise, the paper discusses some program equivalence proofs in a graded context. |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019-01-01T00:00:00Z 2019 2020-01-03T17:48:10Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10773/27224 |
url |
http://hdl.handle.net/10773/27224 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
1843-8121 10.7561/SACS.2019.2.141 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Alexandru Ioan Cuza University of Iasi |
publisher.none.fl_str_mv |
Alexandru Ioan Cuza University of Iasi |
dc.source.none.fl_str_mv |
reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia instacron:RCAAP |
instname_str |
FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
collection |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository.name.fl_str_mv |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
repository.mail.fl_str_mv |
info@rcaap.pt |
_version_ |
1833594296747425792 |