Generalising KAT to Verify Weighted Computations
Main Author: | |
---|---|
Publication Date: | 2019 |
Other Authors: | , , , , |
Format: | Other |
Language: | eng |
Source: | Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
Download full: | http://repositorio.inesctec.pt/handle/123456789/11234 http://dx.doi.org/10.7561/sacs.2019.2.141 |
Summary: | Kleene algebra with tests (KAT) was introduced as an algebraic structure to model and reason about classic imperative programs, i.e. sequences of discrete transitions guarded by Boolean tests. This paper introduces two generalisations of this structure able to express programs as weighted transitions and tests with outcomes in non necessarily bivalent truth spaces: graded Kleene algebra with tests (GKAT) and a variant where tests are also idempotent (I-GKAT). In this context, and in analogy to Kozen's encoding of Propositional Hoare Logic (PHL) in KAT we discuss the encoding of a graded PHL in I-GKAT and of its while-free fragment in GKAT. Moreover, to establish semantics for these structures four new algebras are defined: FSET(T), FREL(K,T) and FLANG(K,T) over complete residuated lattices K and T, and M (n, A) over a GKAT or I-GKAT A. As a final exercise, the paper discusses some program equivalence proofs in a graded context. |
id |
RCAP_7b842acf1afb8e20a9e222a6a09a232d |
---|---|
oai_identifier_str |
oai:repositorio.inesctec.pt:123456789/11234 |
network_acronym_str |
RCAP |
network_name_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository_id_str |
https://opendoar.ac.uk/repository/7160 |
spelling |
Generalising KAT to Verify Weighted ComputationsKleene algebra with tests (KAT) was introduced as an algebraic structure to model and reason about classic imperative programs, i.e. sequences of discrete transitions guarded by Boolean tests. This paper introduces two generalisations of this structure able to express programs as weighted transitions and tests with outcomes in non necessarily bivalent truth spaces: graded Kleene algebra with tests (GKAT) and a variant where tests are also idempotent (I-GKAT). In this context, and in analogy to Kozen's encoding of Propositional Hoare Logic (PHL) in KAT we discuss the encoding of a graded PHL in I-GKAT and of its while-free fragment in GKAT. Moreover, to establish semantics for these structures four new algebras are defined: FSET(T), FREL(K,T) and FLANG(K,T) over complete residuated lattices K and T, and M (n, A) over a GKAT or I-GKAT A. As a final exercise, the paper discusses some program equivalence proofs in a graded context.2020-06-16T09:10:49Z2019-01-01T00:00:00Z2019info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/otherapplication/pdfhttp://repositorio.inesctec.pt/handle/123456789/11234http://dx.doi.org/10.7561/sacs.2019.2.141engHASLab INESC TEC,Universidade do Minho,R. da Universidade,4710-057 Braga,Portugal,CIDMA,Universidade de Aveiro,Campus Universitario de Santiago,3810-193 Aveiro,Portugal,Luís Soares BarbosaMadeira,ALeandro Rafael GomesUniversidade do Minho,R. da Universidade,4710-057 Braga,Portugal & Quantum Software Engineering Group,INL,info:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2024-10-12T02:19:43Zoai:repositorio.inesctec.pt:123456789/11234Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T18:56:22.607534Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse |
dc.title.none.fl_str_mv |
Generalising KAT to Verify Weighted Computations |
title |
Generalising KAT to Verify Weighted Computations |
spellingShingle |
Generalising KAT to Verify Weighted Computations HASLab INESC TEC,Universidade do Minho,R. da Universidade,4710-057 Braga,Portugal, |
title_short |
Generalising KAT to Verify Weighted Computations |
title_full |
Generalising KAT to Verify Weighted Computations |
title_fullStr |
Generalising KAT to Verify Weighted Computations |
title_full_unstemmed |
Generalising KAT to Verify Weighted Computations |
title_sort |
Generalising KAT to Verify Weighted Computations |
author |
HASLab INESC TEC,Universidade do Minho,R. da Universidade,4710-057 Braga,Portugal, |
author_facet |
HASLab INESC TEC,Universidade do Minho,R. da Universidade,4710-057 Braga,Portugal, CIDMA,Universidade de Aveiro,Campus Universitario de Santiago,3810-193 Aveiro,Portugal, Luís Soares Barbosa Madeira,A Leandro Rafael Gomes Universidade do Minho,R. da Universidade,4710-057 Braga,Portugal & Quantum Software Engineering Group,INL, |
author_role |
author |
author2 |
CIDMA,Universidade de Aveiro,Campus Universitario de Santiago,3810-193 Aveiro,Portugal, Luís Soares Barbosa Madeira,A Leandro Rafael Gomes Universidade do Minho,R. da Universidade,4710-057 Braga,Portugal & Quantum Software Engineering Group,INL, |
author2_role |
author author author author author |
dc.contributor.author.fl_str_mv |
HASLab INESC TEC,Universidade do Minho,R. da Universidade,4710-057 Braga,Portugal, CIDMA,Universidade de Aveiro,Campus Universitario de Santiago,3810-193 Aveiro,Portugal, Luís Soares Barbosa Madeira,A Leandro Rafael Gomes Universidade do Minho,R. da Universidade,4710-057 Braga,Portugal & Quantum Software Engineering Group,INL, |
description |
Kleene algebra with tests (KAT) was introduced as an algebraic structure to model and reason about classic imperative programs, i.e. sequences of discrete transitions guarded by Boolean tests. This paper introduces two generalisations of this structure able to express programs as weighted transitions and tests with outcomes in non necessarily bivalent truth spaces: graded Kleene algebra with tests (GKAT) and a variant where tests are also idempotent (I-GKAT). In this context, and in analogy to Kozen's encoding of Propositional Hoare Logic (PHL) in KAT we discuss the encoding of a graded PHL in I-GKAT and of its while-free fragment in GKAT. Moreover, to establish semantics for these structures four new algebras are defined: FSET(T), FREL(K,T) and FLANG(K,T) over complete residuated lattices K and T, and M (n, A) over a GKAT or I-GKAT A. As a final exercise, the paper discusses some program equivalence proofs in a graded context. |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019-01-01T00:00:00Z 2019 2020-06-16T09:10:49Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/other |
format |
other |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://repositorio.inesctec.pt/handle/123456789/11234 http://dx.doi.org/10.7561/sacs.2019.2.141 |
url |
http://repositorio.inesctec.pt/handle/123456789/11234 http://dx.doi.org/10.7561/sacs.2019.2.141 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia instacron:RCAAP |
instname_str |
FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
collection |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository.name.fl_str_mv |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
repository.mail.fl_str_mv |
info@rcaap.pt |
_version_ |
1833597765755600896 |