Presmoothed Landmark estimators of the transition probabilities

Bibliographic Details
Main Author: Machado, Luís Meira
Publication Date: 2016
Language: eng
Source: Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
Download full: http://hdl.handle.net/1822/45377
Summary: Multi-state models can be successfully used to model complicated event history data, for example, describing stages in the disease progression of a patient. In these models one important goal is the estimation of the transition probabilities since they allow for long term prediction of the process. There have been several recent contributions for the estimation of the transition probabilities. Recently, de Uña- Álvarez and Meira-Machado (2015) proposed new estimators for these quantities, and their superiority with respect to the competing estimators has been proved in situations in which the Markov condition is violated. In this paper, we propose a modification of the estimator proposed by de Uña-Álvarez and Meira-Machado based on presmoothing. Simulations show that the presmoothed estimators may be much more efficient than the completely nonparametric estimator.
id RCAP_a91897ffa0b0f66597f8b7d3d0b6bb34
oai_identifier_str oai:repositorium.sdum.uminho.pt:1822/45377
network_acronym_str RCAP
network_name_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository_id_str https://opendoar.ac.uk/repository/7160
spelling Presmoothed Landmark estimators of the transition probabilitiesKaplan-MeierMulti-state modelNonparametric estimationTransition probabilitiesCiências Naturais::MatemáticasMulti-state models can be successfully used to model complicated event history data, for example, describing stages in the disease progression of a patient. In these models one important goal is the estimation of the transition probabilities since they allow for long term prediction of the process. There have been several recent contributions for the estimation of the transition probabilities. Recently, de Uña- Álvarez and Meira-Machado (2015) proposed new estimators for these quantities, and their superiority with respect to the competing estimators has been proved in situations in which the Markov condition is violated. In this paper, we propose a modification of the estimator proposed by de Uña-Álvarez and Meira-Machado based on presmoothing. Simulations show that the presmoothed estimators may be much more efficient than the completely nonparametric estimator.This project was funded by FEDER Funds through “Programa Operacional Factores de Competitividade - COMPETE” and by Portuguese Funds through FCT - “Fundação para a Ciência e a Tecnologia”, in the form of grant PEst-OE/MAT/UI0013/2014.info:eu-repo/semantics/publishedVersionUniversidade do MinhoMachado, Luís Meira20162016-01-01T00:00:00Zconference paperinfo:eu-repo/semantics/publishedVersionapplication/pdfhttp://hdl.handle.net/1822/45377enginfo:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2024-05-11T07:25:17Zoai:repositorium.sdum.uminho.pt:1822/45377Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T16:26:28.449123Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse
dc.title.none.fl_str_mv Presmoothed Landmark estimators of the transition probabilities
title Presmoothed Landmark estimators of the transition probabilities
spellingShingle Presmoothed Landmark estimators of the transition probabilities
Machado, Luís Meira
Kaplan-Meier
Multi-state model
Nonparametric estimation
Transition probabilities
Ciências Naturais::Matemáticas
title_short Presmoothed Landmark estimators of the transition probabilities
title_full Presmoothed Landmark estimators of the transition probabilities
title_fullStr Presmoothed Landmark estimators of the transition probabilities
title_full_unstemmed Presmoothed Landmark estimators of the transition probabilities
title_sort Presmoothed Landmark estimators of the transition probabilities
author Machado, Luís Meira
author_facet Machado, Luís Meira
author_role author
dc.contributor.none.fl_str_mv Universidade do Minho
dc.contributor.author.fl_str_mv Machado, Luís Meira
dc.subject.por.fl_str_mv Kaplan-Meier
Multi-state model
Nonparametric estimation
Transition probabilities
Ciências Naturais::Matemáticas
topic Kaplan-Meier
Multi-state model
Nonparametric estimation
Transition probabilities
Ciências Naturais::Matemáticas
description Multi-state models can be successfully used to model complicated event history data, for example, describing stages in the disease progression of a patient. In these models one important goal is the estimation of the transition probabilities since they allow for long term prediction of the process. There have been several recent contributions for the estimation of the transition probabilities. Recently, de Uña- Álvarez and Meira-Machado (2015) proposed new estimators for these quantities, and their superiority with respect to the competing estimators has been proved in situations in which the Markov condition is violated. In this paper, we propose a modification of the estimator proposed by de Uña-Álvarez and Meira-Machado based on presmoothing. Simulations show that the presmoothed estimators may be much more efficient than the completely nonparametric estimator.
publishDate 2016
dc.date.none.fl_str_mv 2016
2016-01-01T00:00:00Z
dc.type.driver.fl_str_mv conference paper
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/1822/45377
url http://hdl.handle.net/1822/45377
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron:RCAAP
instname_str FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron_str RCAAP
institution RCAAP
reponame_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
collection Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository.name.fl_str_mv Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
repository.mail.fl_str_mv info@rcaap.pt
_version_ 1833595945005088768