Churn prediction modeling comparison in the retail energy market
Main Author: | |
---|---|
Publication Date: | 2022 |
Format: | Master thesis |
Language: | eng |
Source: | Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
Download full: | http://hdl.handle.net/10362/133072 |
Summary: | Dissertation presented as the partial requirement for obtaining a Master's degree in Information Management, specialization in Knowledge Management and Business Intelligence |
id |
RCAP_a82d3263cc1d6623bc6168b8d171e1c8 |
---|---|
oai_identifier_str |
oai:run.unl.pt:10362/133072 |
network_acronym_str |
RCAP |
network_name_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository_id_str |
https://opendoar.ac.uk/repository/7160 |
spelling |
Churn prediction modeling comparison in the retail energy marketData MiningMachine LearningChurn PredictionSupervised LearningRetail EnergyDissertation presented as the partial requirement for obtaining a Master's degree in Information Management, specialization in Knowledge Management and Business IntelligenceMachine Learning algorithms are used in diverse business cases and different markets. This project has the goal of applying different training models with the purpose of predicting customer churn in a retail energy provider. Following CRISP-DM methodology, the dataset was analyzed, prepared and results were evaluated in order to achieve the best method of forecasting the likelihood of churning in an existent customer base. That information is essential in company’s business planning to maintain and increase its portfolio.Henriques, Roberto André PereiraRUNNogueira, Thiago Sampaio2022-02-17T12:15:28Z2022-01-192022-01-19T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10362/133072TID:202948218enginfo:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2024-05-22T17:59:32Zoai:run.unl.pt:10362/133072Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T17:30:34.961584Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse |
dc.title.none.fl_str_mv |
Churn prediction modeling comparison in the retail energy market |
title |
Churn prediction modeling comparison in the retail energy market |
spellingShingle |
Churn prediction modeling comparison in the retail energy market Nogueira, Thiago Sampaio Data Mining Machine Learning Churn Prediction Supervised Learning Retail Energy |
title_short |
Churn prediction modeling comparison in the retail energy market |
title_full |
Churn prediction modeling comparison in the retail energy market |
title_fullStr |
Churn prediction modeling comparison in the retail energy market |
title_full_unstemmed |
Churn prediction modeling comparison in the retail energy market |
title_sort |
Churn prediction modeling comparison in the retail energy market |
author |
Nogueira, Thiago Sampaio |
author_facet |
Nogueira, Thiago Sampaio |
author_role |
author |
dc.contributor.none.fl_str_mv |
Henriques, Roberto André Pereira RUN |
dc.contributor.author.fl_str_mv |
Nogueira, Thiago Sampaio |
dc.subject.por.fl_str_mv |
Data Mining Machine Learning Churn Prediction Supervised Learning Retail Energy |
topic |
Data Mining Machine Learning Churn Prediction Supervised Learning Retail Energy |
description |
Dissertation presented as the partial requirement for obtaining a Master's degree in Information Management, specialization in Knowledge Management and Business Intelligence |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022-02-17T12:15:28Z 2022-01-19 2022-01-19T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10362/133072 TID:202948218 |
url |
http://hdl.handle.net/10362/133072 |
identifier_str_mv |
TID:202948218 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia instacron:RCAAP |
instname_str |
FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
collection |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository.name.fl_str_mv |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
repository.mail.fl_str_mv |
info@rcaap.pt |
_version_ |
1833596745187065856 |