Churn prediction modeling comparison in the retail energy market

Bibliographic Details
Main Author: Nogueira, Thiago Sampaio
Publication Date: 2022
Format: Master thesis
Language: eng
Source: Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
Download full: http://hdl.handle.net/10362/133072
Summary: Dissertation presented as the partial requirement for obtaining a Master's degree in Information Management, specialization in Knowledge Management and Business Intelligence
id RCAP_a82d3263cc1d6623bc6168b8d171e1c8
oai_identifier_str oai:run.unl.pt:10362/133072
network_acronym_str RCAP
network_name_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository_id_str https://opendoar.ac.uk/repository/7160
spelling Churn prediction modeling comparison in the retail energy marketData MiningMachine LearningChurn PredictionSupervised LearningRetail EnergyDissertation presented as the partial requirement for obtaining a Master's degree in Information Management, specialization in Knowledge Management and Business IntelligenceMachine Learning algorithms are used in diverse business cases and different markets. This project has the goal of applying different training models with the purpose of predicting customer churn in a retail energy provider. Following CRISP-DM methodology, the dataset was analyzed, prepared and results were evaluated in order to achieve the best method of forecasting the likelihood of churning in an existent customer base. That information is essential in company’s business planning to maintain and increase its portfolio.Henriques, Roberto André PereiraRUNNogueira, Thiago Sampaio2022-02-17T12:15:28Z2022-01-192022-01-19T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10362/133072TID:202948218enginfo:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2024-05-22T17:59:32Zoai:run.unl.pt:10362/133072Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T17:30:34.961584Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse
dc.title.none.fl_str_mv Churn prediction modeling comparison in the retail energy market
title Churn prediction modeling comparison in the retail energy market
spellingShingle Churn prediction modeling comparison in the retail energy market
Nogueira, Thiago Sampaio
Data Mining
Machine Learning
Churn Prediction
Supervised Learning
Retail Energy
title_short Churn prediction modeling comparison in the retail energy market
title_full Churn prediction modeling comparison in the retail energy market
title_fullStr Churn prediction modeling comparison in the retail energy market
title_full_unstemmed Churn prediction modeling comparison in the retail energy market
title_sort Churn prediction modeling comparison in the retail energy market
author Nogueira, Thiago Sampaio
author_facet Nogueira, Thiago Sampaio
author_role author
dc.contributor.none.fl_str_mv Henriques, Roberto André Pereira
RUN
dc.contributor.author.fl_str_mv Nogueira, Thiago Sampaio
dc.subject.por.fl_str_mv Data Mining
Machine Learning
Churn Prediction
Supervised Learning
Retail Energy
topic Data Mining
Machine Learning
Churn Prediction
Supervised Learning
Retail Energy
description Dissertation presented as the partial requirement for obtaining a Master's degree in Information Management, specialization in Knowledge Management and Business Intelligence
publishDate 2022
dc.date.none.fl_str_mv 2022-02-17T12:15:28Z
2022-01-19
2022-01-19T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10362/133072
TID:202948218
url http://hdl.handle.net/10362/133072
identifier_str_mv TID:202948218
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron:RCAAP
instname_str FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron_str RCAAP
institution RCAAP
reponame_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
collection Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository.name.fl_str_mv Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
repository.mail.fl_str_mv info@rcaap.pt
_version_ 1833596745187065856