Exportação concluída — 

Research trends in customer churn prediction: A data mining approach

Detalhes bibliográficos
Autor(a) principal: Tianyuan, Z.
Data de Publicação: 2021
Outros Autores: Moro, S.
Idioma: eng
Título da fonte: Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
Texto Completo: http://hdl.handle.net/10071/23655
Resumo: This study aims to present a very recent literature review on customer churn prediction based on 40 relevant articles published between 2010 and June 2020. For searching the literature, the 40 most relevant articles according to Google Scholar ranking were selected and collected. Then, each of the articles were scrutinized according to six main dimensions: Reference; Areas of Research; Main Goal; Dataset; Techniques; outcomes. The research has proven that the most widely used data mining techniques are decision tree (DT), support vector machines (SVM) and Logistic Regression (LR). The process combined with the massive data accumulation in the telecom industry and the increasingly mature data mining technology motivates the development and application of customer churn model to predict the customer behavior. Therefore, the telecom company can effectively predict the churn of customers, and then avoid customer churn by taking measures such as reducing monthly fixed fees. The present literature review offers recent insights on customer churn prediction scientific literature, revealing research gaps, providing evidences on current trends and helping to understand how to develop accurate and efficient Marketing strategies. The most important finding is that artificial intelligence techniques are are obviously becoming more used in recent years for telecom customer churn prediction. Especially, artificial NN are outstandingly recognized as a competent prediction method. This is a relevant topic for journals related to other social sciences, such as Banking, and also telecom data make up an outstanding source for developing novel prediction modeling techniques. Thus, this study can lead to recommendations for future customer churn prediction improvement, in addition to providing an overview of current research trends.
id RCAP_6376e3e57d93294079c856b17544b7d9
oai_identifier_str oai:repositorio.iscte-iul.pt:10071/23655
network_acronym_str RCAP
network_name_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository_id_str https://opendoar.ac.uk/repository/7160
spelling Research trends in customer churn prediction: A data mining approachTelecomData miningCustomer churn predictionThis study aims to present a very recent literature review on customer churn prediction based on 40 relevant articles published between 2010 and June 2020. For searching the literature, the 40 most relevant articles according to Google Scholar ranking were selected and collected. Then, each of the articles were scrutinized according to six main dimensions: Reference; Areas of Research; Main Goal; Dataset; Techniques; outcomes. The research has proven that the most widely used data mining techniques are decision tree (DT), support vector machines (SVM) and Logistic Regression (LR). The process combined with the massive data accumulation in the telecom industry and the increasingly mature data mining technology motivates the development and application of customer churn model to predict the customer behavior. Therefore, the telecom company can effectively predict the churn of customers, and then avoid customer churn by taking measures such as reducing monthly fixed fees. The present literature review offers recent insights on customer churn prediction scientific literature, revealing research gaps, providing evidences on current trends and helping to understand how to develop accurate and efficient Marketing strategies. The most important finding is that artificial intelligence techniques are are obviously becoming more used in recent years for telecom customer churn prediction. Especially, artificial NN are outstandingly recognized as a competent prediction method. This is a relevant topic for journals related to other social sciences, such as Banking, and also telecom data make up an outstanding source for developing novel prediction modeling techniques. Thus, this study can lead to recommendations for future customer churn prediction improvement, in addition to providing an overview of current research trends.Springer2021-12-06T16:59:40Z2021-01-01T00:00:00Z20212021-12-06T16:56:35Zconference objectinfo:eu-repo/semantics/publishedVersionapplication/pdfhttp://hdl.handle.net/10071/23655eng978-3-030-72657-72194-535710.1007/978-3-030-72657-7_22Tianyuan, Z.Moro, S.info:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2024-07-07T03:25:32Zoai:repositorio.iscte-iul.pt:10071/23655Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T18:23:11.663582Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse
dc.title.none.fl_str_mv Research trends in customer churn prediction: A data mining approach
title Research trends in customer churn prediction: A data mining approach
spellingShingle Research trends in customer churn prediction: A data mining approach
Tianyuan, Z.
Telecom
Data mining
Customer churn prediction
title_short Research trends in customer churn prediction: A data mining approach
title_full Research trends in customer churn prediction: A data mining approach
title_fullStr Research trends in customer churn prediction: A data mining approach
title_full_unstemmed Research trends in customer churn prediction: A data mining approach
title_sort Research trends in customer churn prediction: A data mining approach
author Tianyuan, Z.
author_facet Tianyuan, Z.
Moro, S.
author_role author
author2 Moro, S.
author2_role author
dc.contributor.author.fl_str_mv Tianyuan, Z.
Moro, S.
dc.subject.por.fl_str_mv Telecom
Data mining
Customer churn prediction
topic Telecom
Data mining
Customer churn prediction
description This study aims to present a very recent literature review on customer churn prediction based on 40 relevant articles published between 2010 and June 2020. For searching the literature, the 40 most relevant articles according to Google Scholar ranking were selected and collected. Then, each of the articles were scrutinized according to six main dimensions: Reference; Areas of Research; Main Goal; Dataset; Techniques; outcomes. The research has proven that the most widely used data mining techniques are decision tree (DT), support vector machines (SVM) and Logistic Regression (LR). The process combined with the massive data accumulation in the telecom industry and the increasingly mature data mining technology motivates the development and application of customer churn model to predict the customer behavior. Therefore, the telecom company can effectively predict the churn of customers, and then avoid customer churn by taking measures such as reducing monthly fixed fees. The present literature review offers recent insights on customer churn prediction scientific literature, revealing research gaps, providing evidences on current trends and helping to understand how to develop accurate and efficient Marketing strategies. The most important finding is that artificial intelligence techniques are are obviously becoming more used in recent years for telecom customer churn prediction. Especially, artificial NN are outstandingly recognized as a competent prediction method. This is a relevant topic for journals related to other social sciences, such as Banking, and also telecom data make up an outstanding source for developing novel prediction modeling techniques. Thus, this study can lead to recommendations for future customer churn prediction improvement, in addition to providing an overview of current research trends.
publishDate 2021
dc.date.none.fl_str_mv 2021-12-06T16:59:40Z
2021-01-01T00:00:00Z
2021
2021-12-06T16:56:35Z
dc.type.driver.fl_str_mv conference object
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10071/23655
url http://hdl.handle.net/10071/23655
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 978-3-030-72657-7
2194-5357
10.1007/978-3-030-72657-7_22
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Springer
publisher.none.fl_str_mv Springer
dc.source.none.fl_str_mv reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron:RCAAP
instname_str FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron_str RCAAP
institution RCAAP
reponame_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
collection Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository.name.fl_str_mv Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
repository.mail.fl_str_mv info@rcaap.pt
_version_ 1833597376354320384