Feature Selection on Epistatic Problems Using Genetic Algorithms with Nested Classifiers

Bibliographic Details
Main Author: Carvalho, Pedro
Publication Date: 2023
Other Authors: Ribeiro, Bruno, Rodrigues, Nuno M., Batista, João E., Vanneschi, Leonardo, Silva, Sara
Language: eng
Source: Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
Download full: http://hdl.handle.net/10362/162072
Summary: Carvalho, P., Ribeiro, B., Rodrigues, N. M., Batista, J. E., Vanneschi, L., & Silva, S. (2023). Feature Selection on Epistatic Problems Using Genetic Algorithms with Nested Classifiers. In J. Correia, S. Smith, & R. Qaddoura (Eds.), Applications of Evolutionary Computation: 26th European Conference, EvoApplications 2023 Held as Part of EvoStar 2023 Brno, Czech Republic, April 12–14, 2023 Proceedings (pp. 656-671). (Lecture Notes in Computer Science; Vol. 13989). Springer. https://doi.org/10.1007/978-3-031-30229-9_42---This work was supported by FCT, Portugal, through funding of LASIGE Research Unit (UIDB/00408/2020, UIDP/00408/2020) and CISUC (UID/CEC/00326/2020); projects AICE (DSAIPA/DS/0113/2019), from FCT, and RETINA (NORTE-01-0145-FEDER-000062), supported by Norte Portugal Regional Operational Programme (NORTE 2020), under the PORTUGAL 2020 Partnership Agreement, through the European Regional Development Fund (ERDF). The authors acknowledge the work facilities and equipment provided by GECAD research center (UIDB/00760/2020) to the project team. The authors were also supported by their respective PhD grants, Pedro Carvalho (UI/BD/151053/2021), Nuno Rodrigues (2021/05322/BD), João Batista (SFRH/BD/143972/2019).
id RCAP_a3f0def48f2ff72baf2abddce0b0cba6
oai_identifier_str oai:run.unl.pt:10362/162072
network_acronym_str RCAP
network_name_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository_id_str https://opendoar.ac.uk/repository/7160
spelling Feature Selection on Epistatic Problems Using Genetic Algorithms with Nested ClassifiersFeature SelectionEpistasisGenetic AlgorithmsGenetic ProgrammingDecision TreesMachine LearningGenome-Wide Association StudiesTheoretical Computer ScienceComputer Science(all)Carvalho, P., Ribeiro, B., Rodrigues, N. M., Batista, J. E., Vanneschi, L., & Silva, S. (2023). Feature Selection on Epistatic Problems Using Genetic Algorithms with Nested Classifiers. In J. Correia, S. Smith, & R. Qaddoura (Eds.), Applications of Evolutionary Computation: 26th European Conference, EvoApplications 2023 Held as Part of EvoStar 2023 Brno, Czech Republic, April 12–14, 2023 Proceedings (pp. 656-671). (Lecture Notes in Computer Science; Vol. 13989). Springer. https://doi.org/10.1007/978-3-031-30229-9_42---This work was supported by FCT, Portugal, through funding of LASIGE Research Unit (UIDB/00408/2020, UIDP/00408/2020) and CISUC (UID/CEC/00326/2020); projects AICE (DSAIPA/DS/0113/2019), from FCT, and RETINA (NORTE-01-0145-FEDER-000062), supported by Norte Portugal Regional Operational Programme (NORTE 2020), under the PORTUGAL 2020 Partnership Agreement, through the European Regional Development Fund (ERDF). The authors acknowledge the work facilities and equipment provided by GECAD research center (UIDB/00760/2020) to the project team. The authors were also supported by their respective PhD grants, Pedro Carvalho (UI/BD/151053/2021), Nuno Rodrigues (2021/05322/BD), João Batista (SFRH/BD/143972/2019).Feature selection is becoming an essential part of machine learning pipelines, including the ones generated by recent AutoML tools. In case of datasets with epistatic interactions between the features, like many datasets from the bioinformatics domain, feature selection may even become crucial. A recent method called SLUG has outperformed the state-of-the-art algorithms for feature selection on a large set of epistatic noisy datasets. SLUG uses genetic programming (GP) as a classifier (learner), nested inside a genetic algorithm (GA) that performs feature selection (wrapper). In this work, we pair GA with different learners, in an attempt to match the results of SLUG with less computational effort. We also propose a new feedback mechanism between the learner and the wrapper to improve the convergence towards the key features. Although we do not match the results of SLUG, we demonstrate the positive effect of the feedback mechanism, motivating additional research in this area to further improve SLUG and other existing feature selection methods.SpringerNOVA Information Management School (NOVA IMS)Information Management Research Center (MagIC) - NOVA Information Management SchoolRUNCarvalho, PedroRibeiro, BrunoRodrigues, Nuno M.Batista, João E.Vanneschi, LeonardoSilva, Sara2024-04-10T00:34:47Z2023-042023-04-01T00:00:00Zconference objectinfo:eu-repo/semantics/publishedVersion16application/pdfhttp://hdl.handle.net/10362/162072eng978-3-031-30228-20302-9743PURE: 58481345https://doi.org/10.1007/978-3-031-30229-9_42info:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2024-05-22T18:17:13Zoai:run.unl.pt:10362/162072Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T17:47:51.164565Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse
dc.title.none.fl_str_mv Feature Selection on Epistatic Problems Using Genetic Algorithms with Nested Classifiers
title Feature Selection on Epistatic Problems Using Genetic Algorithms with Nested Classifiers
spellingShingle Feature Selection on Epistatic Problems Using Genetic Algorithms with Nested Classifiers
Carvalho, Pedro
Feature Selection
Epistasis
Genetic Algorithms
Genetic Programming
Decision Trees
Machine Learning
Genome-Wide Association Studies
Theoretical Computer Science
Computer Science(all)
title_short Feature Selection on Epistatic Problems Using Genetic Algorithms with Nested Classifiers
title_full Feature Selection on Epistatic Problems Using Genetic Algorithms with Nested Classifiers
title_fullStr Feature Selection on Epistatic Problems Using Genetic Algorithms with Nested Classifiers
title_full_unstemmed Feature Selection on Epistatic Problems Using Genetic Algorithms with Nested Classifiers
title_sort Feature Selection on Epistatic Problems Using Genetic Algorithms with Nested Classifiers
author Carvalho, Pedro
author_facet Carvalho, Pedro
Ribeiro, Bruno
Rodrigues, Nuno M.
Batista, João E.
Vanneschi, Leonardo
Silva, Sara
author_role author
author2 Ribeiro, Bruno
Rodrigues, Nuno M.
Batista, João E.
Vanneschi, Leonardo
Silva, Sara
author2_role author
author
author
author
author
dc.contributor.none.fl_str_mv NOVA Information Management School (NOVA IMS)
Information Management Research Center (MagIC) - NOVA Information Management School
RUN
dc.contributor.author.fl_str_mv Carvalho, Pedro
Ribeiro, Bruno
Rodrigues, Nuno M.
Batista, João E.
Vanneschi, Leonardo
Silva, Sara
dc.subject.por.fl_str_mv Feature Selection
Epistasis
Genetic Algorithms
Genetic Programming
Decision Trees
Machine Learning
Genome-Wide Association Studies
Theoretical Computer Science
Computer Science(all)
topic Feature Selection
Epistasis
Genetic Algorithms
Genetic Programming
Decision Trees
Machine Learning
Genome-Wide Association Studies
Theoretical Computer Science
Computer Science(all)
description Carvalho, P., Ribeiro, B., Rodrigues, N. M., Batista, J. E., Vanneschi, L., & Silva, S. (2023). Feature Selection on Epistatic Problems Using Genetic Algorithms with Nested Classifiers. In J. Correia, S. Smith, & R. Qaddoura (Eds.), Applications of Evolutionary Computation: 26th European Conference, EvoApplications 2023 Held as Part of EvoStar 2023 Brno, Czech Republic, April 12–14, 2023 Proceedings (pp. 656-671). (Lecture Notes in Computer Science; Vol. 13989). Springer. https://doi.org/10.1007/978-3-031-30229-9_42---This work was supported by FCT, Portugal, through funding of LASIGE Research Unit (UIDB/00408/2020, UIDP/00408/2020) and CISUC (UID/CEC/00326/2020); projects AICE (DSAIPA/DS/0113/2019), from FCT, and RETINA (NORTE-01-0145-FEDER-000062), supported by Norte Portugal Regional Operational Programme (NORTE 2020), under the PORTUGAL 2020 Partnership Agreement, through the European Regional Development Fund (ERDF). The authors acknowledge the work facilities and equipment provided by GECAD research center (UIDB/00760/2020) to the project team. The authors were also supported by their respective PhD grants, Pedro Carvalho (UI/BD/151053/2021), Nuno Rodrigues (2021/05322/BD), João Batista (SFRH/BD/143972/2019).
publishDate 2023
dc.date.none.fl_str_mv 2023-04
2023-04-01T00:00:00Z
2024-04-10T00:34:47Z
dc.type.driver.fl_str_mv conference object
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10362/162072
url http://hdl.handle.net/10362/162072
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 978-3-031-30228-2
0302-9743
PURE: 58481345
https://doi.org/10.1007/978-3-031-30229-9_42
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv 16
application/pdf
dc.publisher.none.fl_str_mv Springer
publisher.none.fl_str_mv Springer
dc.source.none.fl_str_mv reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron:RCAAP
instname_str FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron_str RCAAP
institution RCAAP
reponame_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
collection Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository.name.fl_str_mv Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
repository.mail.fl_str_mv info@rcaap.pt
_version_ 1833596968788557824