DepthLiDAR: active segmentation of environment depth map into mobile sensors

Bibliographic Details
Main Author: Limeira, Marcelo A.
Publication Date: 2021
Other Authors: Piardi, Luis, Kalempa, Vivian Cremer, Leitão, Paulo, Oliveira, Andre Schneider
Format: Article
Language: eng
Source: Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
Download full: http://hdl.handle.net/10198/24605
Summary: This paper presents a novel approach for creating virtual LiDAR scanners through the active segmentation of point clouds. The method employs top-view point cloud segmentation in virtual LiDAR sensors that can be applied to the intelligent behavior of autonomous agents. Segmentation is correlated with the visual tracking of the agent for localization in the environmentand point cloud. Virtual LiDARsensors with different characteristicsand positions can then be generated. Thismethod is referred to as the DepthLiDAR approach, and is rigorously evaluated to quantify its performance and determine its advantages and limitations. An extensive set of experiments is conducted using real and virtual LiDAR sensors to compare both approaches. The objective is to propose a novel method to incorporate spatial perception in warehouses, aiming to achieve Industry 4.0. Thus, it is tested in a low-scale warehouse to incorporate realistic features. The analysis of the experiments shows a measurement improvement of 52.24% compared to the conventional LiDAR.
id RCAP_a1bea92d0492843b7a2d278ef82a6e08
oai_identifier_str oai:bibliotecadigital.ipb.pt:10198/24605
network_acronym_str RCAP
network_name_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository_id_str https://opendoar.ac.uk/repository/7160
spelling DepthLiDAR: active segmentation of environment depth map into mobile sensorsVirtual sensorsLIDARPoint cloudActive segmentationIndustry 4.0.This paper presents a novel approach for creating virtual LiDAR scanners through the active segmentation of point clouds. The method employs top-view point cloud segmentation in virtual LiDAR sensors that can be applied to the intelligent behavior of autonomous agents. Segmentation is correlated with the visual tracking of the agent for localization in the environmentand point cloud. Virtual LiDARsensors with different characteristicsand positions can then be generated. Thismethod is referred to as the DepthLiDAR approach, and is rigorously evaluated to quantify its performance and determine its advantages and limitations. An extensive set of experiments is conducted using real and virtual LiDAR sensors to compare both approaches. The objective is to propose a novel method to incorporate spatial perception in warehouses, aiming to achieve Industry 4.0. Thus, it is tested in a low-scale warehouse to incorporate realistic features. The analysis of the experiments shows a measurement improvement of 52.24% compared to the conventional LiDAR.This work was supported in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior-Brasil (CAPES)–Finance Code 001 and in part by the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq).Biblioteca Digital do IPBLimeira, Marcelo A.Piardi, LuisKalempa, Vivian CremerLeitão, PauloOliveira, Andre Schneider2022-01-12T17:04:08Z20212021-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10198/24605engLimeira, Marcelo; Piardi, Luis; Kalempa, Vivian Cremer; Leitão, Paulo; Oliveira, Andre Schneider (2021). DepthLiDAR: active segmentation of environment depth map into mobile sensors. IEEE Sensors Journal. ISSN 1558-1748. 21:17, p. 19047-190571558-174810.1109/JSEN.2021.3088007info:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2025-02-25T12:15:29Zoai:bibliotecadigital.ipb.pt:10198/24605Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T11:43:00.671691Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse
dc.title.none.fl_str_mv DepthLiDAR: active segmentation of environment depth map into mobile sensors
title DepthLiDAR: active segmentation of environment depth map into mobile sensors
spellingShingle DepthLiDAR: active segmentation of environment depth map into mobile sensors
Limeira, Marcelo A.
Virtual sensors
LIDAR
Point cloud
Active segmentation
Industry 4.0.
title_short DepthLiDAR: active segmentation of environment depth map into mobile sensors
title_full DepthLiDAR: active segmentation of environment depth map into mobile sensors
title_fullStr DepthLiDAR: active segmentation of environment depth map into mobile sensors
title_full_unstemmed DepthLiDAR: active segmentation of environment depth map into mobile sensors
title_sort DepthLiDAR: active segmentation of environment depth map into mobile sensors
author Limeira, Marcelo A.
author_facet Limeira, Marcelo A.
Piardi, Luis
Kalempa, Vivian Cremer
Leitão, Paulo
Oliveira, Andre Schneider
author_role author
author2 Piardi, Luis
Kalempa, Vivian Cremer
Leitão, Paulo
Oliveira, Andre Schneider
author2_role author
author
author
author
dc.contributor.none.fl_str_mv Biblioteca Digital do IPB
dc.contributor.author.fl_str_mv Limeira, Marcelo A.
Piardi, Luis
Kalempa, Vivian Cremer
Leitão, Paulo
Oliveira, Andre Schneider
dc.subject.por.fl_str_mv Virtual sensors
LIDAR
Point cloud
Active segmentation
Industry 4.0.
topic Virtual sensors
LIDAR
Point cloud
Active segmentation
Industry 4.0.
description This paper presents a novel approach for creating virtual LiDAR scanners through the active segmentation of point clouds. The method employs top-view point cloud segmentation in virtual LiDAR sensors that can be applied to the intelligent behavior of autonomous agents. Segmentation is correlated with the visual tracking of the agent for localization in the environmentand point cloud. Virtual LiDARsensors with different characteristicsand positions can then be generated. Thismethod is referred to as the DepthLiDAR approach, and is rigorously evaluated to quantify its performance and determine its advantages and limitations. An extensive set of experiments is conducted using real and virtual LiDAR sensors to compare both approaches. The objective is to propose a novel method to incorporate spatial perception in warehouses, aiming to achieve Industry 4.0. Thus, it is tested in a low-scale warehouse to incorporate realistic features. The analysis of the experiments shows a measurement improvement of 52.24% compared to the conventional LiDAR.
publishDate 2021
dc.date.none.fl_str_mv 2021
2021-01-01T00:00:00Z
2022-01-12T17:04:08Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10198/24605
url http://hdl.handle.net/10198/24605
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Limeira, Marcelo; Piardi, Luis; Kalempa, Vivian Cremer; Leitão, Paulo; Oliveira, Andre Schneider (2021). DepthLiDAR: active segmentation of environment depth map into mobile sensors. IEEE Sensors Journal. ISSN 1558-1748. 21:17, p. 19047-19057
1558-1748
10.1109/JSEN.2021.3088007
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron:RCAAP
instname_str FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron_str RCAAP
institution RCAAP
reponame_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
collection Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository.name.fl_str_mv Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
repository.mail.fl_str_mv info@rcaap.pt
_version_ 1833592173983956992