DepthLiDAR: active segmentation of environment depth map into mobile sensors
Main Author: | |
---|---|
Publication Date: | 2021 |
Other Authors: | , , , |
Format: | Article |
Language: | eng |
Source: | Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
Download full: | http://hdl.handle.net/10198/24605 |
Summary: | This paper presents a novel approach for creating virtual LiDAR scanners through the active segmentation of point clouds. The method employs top-view point cloud segmentation in virtual LiDAR sensors that can be applied to the intelligent behavior of autonomous agents. Segmentation is correlated with the visual tracking of the agent for localization in the environmentand point cloud. Virtual LiDARsensors with different characteristicsand positions can then be generated. Thismethod is referred to as the DepthLiDAR approach, and is rigorously evaluated to quantify its performance and determine its advantages and limitations. An extensive set of experiments is conducted using real and virtual LiDAR sensors to compare both approaches. The objective is to propose a novel method to incorporate spatial perception in warehouses, aiming to achieve Industry 4.0. Thus, it is tested in a low-scale warehouse to incorporate realistic features. The analysis of the experiments shows a measurement improvement of 52.24% compared to the conventional LiDAR. |
id |
RCAP_a1bea92d0492843b7a2d278ef82a6e08 |
---|---|
oai_identifier_str |
oai:bibliotecadigital.ipb.pt:10198/24605 |
network_acronym_str |
RCAP |
network_name_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository_id_str |
https://opendoar.ac.uk/repository/7160 |
spelling |
DepthLiDAR: active segmentation of environment depth map into mobile sensorsVirtual sensorsLIDARPoint cloudActive segmentationIndustry 4.0.This paper presents a novel approach for creating virtual LiDAR scanners through the active segmentation of point clouds. The method employs top-view point cloud segmentation in virtual LiDAR sensors that can be applied to the intelligent behavior of autonomous agents. Segmentation is correlated with the visual tracking of the agent for localization in the environmentand point cloud. Virtual LiDARsensors with different characteristicsand positions can then be generated. Thismethod is referred to as the DepthLiDAR approach, and is rigorously evaluated to quantify its performance and determine its advantages and limitations. An extensive set of experiments is conducted using real and virtual LiDAR sensors to compare both approaches. The objective is to propose a novel method to incorporate spatial perception in warehouses, aiming to achieve Industry 4.0. Thus, it is tested in a low-scale warehouse to incorporate realistic features. The analysis of the experiments shows a measurement improvement of 52.24% compared to the conventional LiDAR.This work was supported in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior-Brasil (CAPES)–Finance Code 001 and in part by the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq).Biblioteca Digital do IPBLimeira, Marcelo A.Piardi, LuisKalempa, Vivian CremerLeitão, PauloOliveira, Andre Schneider2022-01-12T17:04:08Z20212021-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10198/24605engLimeira, Marcelo; Piardi, Luis; Kalempa, Vivian Cremer; Leitão, Paulo; Oliveira, Andre Schneider (2021). DepthLiDAR: active segmentation of environment depth map into mobile sensors. IEEE Sensors Journal. ISSN 1558-1748. 21:17, p. 19047-190571558-174810.1109/JSEN.2021.3088007info:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2025-02-25T12:15:29Zoai:bibliotecadigital.ipb.pt:10198/24605Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T11:43:00.671691Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse |
dc.title.none.fl_str_mv |
DepthLiDAR: active segmentation of environment depth map into mobile sensors |
title |
DepthLiDAR: active segmentation of environment depth map into mobile sensors |
spellingShingle |
DepthLiDAR: active segmentation of environment depth map into mobile sensors Limeira, Marcelo A. Virtual sensors LIDAR Point cloud Active segmentation Industry 4.0. |
title_short |
DepthLiDAR: active segmentation of environment depth map into mobile sensors |
title_full |
DepthLiDAR: active segmentation of environment depth map into mobile sensors |
title_fullStr |
DepthLiDAR: active segmentation of environment depth map into mobile sensors |
title_full_unstemmed |
DepthLiDAR: active segmentation of environment depth map into mobile sensors |
title_sort |
DepthLiDAR: active segmentation of environment depth map into mobile sensors |
author |
Limeira, Marcelo A. |
author_facet |
Limeira, Marcelo A. Piardi, Luis Kalempa, Vivian Cremer Leitão, Paulo Oliveira, Andre Schneider |
author_role |
author |
author2 |
Piardi, Luis Kalempa, Vivian Cremer Leitão, Paulo Oliveira, Andre Schneider |
author2_role |
author author author author |
dc.contributor.none.fl_str_mv |
Biblioteca Digital do IPB |
dc.contributor.author.fl_str_mv |
Limeira, Marcelo A. Piardi, Luis Kalempa, Vivian Cremer Leitão, Paulo Oliveira, Andre Schneider |
dc.subject.por.fl_str_mv |
Virtual sensors LIDAR Point cloud Active segmentation Industry 4.0. |
topic |
Virtual sensors LIDAR Point cloud Active segmentation Industry 4.0. |
description |
This paper presents a novel approach for creating virtual LiDAR scanners through the active segmentation of point clouds. The method employs top-view point cloud segmentation in virtual LiDAR sensors that can be applied to the intelligent behavior of autonomous agents. Segmentation is correlated with the visual tracking of the agent for localization in the environmentand point cloud. Virtual LiDARsensors with different characteristicsand positions can then be generated. Thismethod is referred to as the DepthLiDAR approach, and is rigorously evaluated to quantify its performance and determine its advantages and limitations. An extensive set of experiments is conducted using real and virtual LiDAR sensors to compare both approaches. The objective is to propose a novel method to incorporate spatial perception in warehouses, aiming to achieve Industry 4.0. Thus, it is tested in a low-scale warehouse to incorporate realistic features. The analysis of the experiments shows a measurement improvement of 52.24% compared to the conventional LiDAR. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021 2021-01-01T00:00:00Z 2022-01-12T17:04:08Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10198/24605 |
url |
http://hdl.handle.net/10198/24605 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Limeira, Marcelo; Piardi, Luis; Kalempa, Vivian Cremer; Leitão, Paulo; Oliveira, Andre Schneider (2021). DepthLiDAR: active segmentation of environment depth map into mobile sensors. IEEE Sensors Journal. ISSN 1558-1748. 21:17, p. 19047-19057 1558-1748 10.1109/JSEN.2021.3088007 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia instacron:RCAAP |
instname_str |
FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
collection |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository.name.fl_str_mv |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
repository.mail.fl_str_mv |
info@rcaap.pt |
_version_ |
1833592173983956992 |