An advanced deep neuroevolution model for probabilistic load forecasting

Bibliographic Details
Main Author: Jalali, Seyed M.J.
Publication Date: 2022
Other Authors: Arora, Paul, Panigrahi, B.K., Khosravi, Abbas, Najavandi, Saeid, Catalão, João P.S., Osório, Gerardo J.
Format: Article
Language: eng
Source: Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
Download full: http://hdl.handle.net/11328/4374
https://doi.org/10.1016/j.epsr.2022.108351
Summary: Probabilistic load forecasting (PLF) is necessary for power system operations and control as it assists in proper scheduling and dispatch. Moreover, PLF adequately captures the uncertainty whether that uncertainty is related to load data or the forecasting model. And there are not many PLF models, and those which exist are very complex or difficult to interpret. This paper proposes a novel neuroevolution algorithm for handling the uncertainty associated with load forecasting. In this paper, a new modified evolutionary algorithm is proposed which is used to find the optimal hyperparameters of 1D-Convolutional neural network (CNN). The probabilistic forecasts are produced by minimizing the mean scaled interval score loss function at 50%, 90% and 95% prediction intervals. The proposed neuroevolution algorithm is tested on a global energy forecasting competition (GEFCom-2014) load dataset, and two different experiments are conducted considering load only and one with load and temperature. Strong conclusions are drawn from these experiments. Also, the proposed model is compared with other benchmark models, and it has been shown that it outperforms the other models.
id RCAP_a1307e1acffda2e3e030c2949c9c7050
oai_identifier_str oai:repositorio.upt.pt:11328/4374
network_acronym_str RCAP
network_name_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository_id_str https://opendoar.ac.uk/repository/7160
spelling An advanced deep neuroevolution model for probabilistic load forecastingDeep learningNeuroevolutionProbabilistic load forecastingOptimizationProbabilistic load forecasting (PLF) is necessary for power system operations and control as it assists in proper scheduling and dispatch. Moreover, PLF adequately captures the uncertainty whether that uncertainty is related to load data or the forecasting model. And there are not many PLF models, and those which exist are very complex or difficult to interpret. This paper proposes a novel neuroevolution algorithm for handling the uncertainty associated with load forecasting. In this paper, a new modified evolutionary algorithm is proposed which is used to find the optimal hyperparameters of 1D-Convolutional neural network (CNN). The probabilistic forecasts are produced by minimizing the mean scaled interval score loss function at 50%, 90% and 95% prediction intervals. The proposed neuroevolution algorithm is tested on a global energy forecasting competition (GEFCom-2014) load dataset, and two different experiments are conducted considering load only and one with load and temperature. Strong conclusions are drawn from these experiments. Also, the proposed model is compared with other benchmark models, and it has been shown that it outperforms the other models.Elsevier2022-07-29T10:51:07Z2022-07-292022-07-13T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfJalali, S. M. J., Arora, P., Panigrahi, B. K., Khosravi, A., Najavandi, S., Osório, G. J., & Catalão, J. P. S. (2022). An advanced deep neuroevolution model for probabilistic load forecasting. Electric Power Systems Research, 211(Article ID 108351), 1-7. https://doi.org/10.1016/j.epsr.2022.108351. Repositório Institucional UPT. http://hdl.handle.net/11328/4374http://hdl.handle.net/11328/4374Jalali, S. M. J., Arora, P., Panigrahi, B. K., Khosravi, A., Najavandi, S., Osório, G. J., & Catalão, J. P. S. (2022). An advanced deep neuroevolution model for probabilistic load forecasting. Electric Power Systems Research, 211(Article ID 108351), 1-7. https://doi.org/10.1016/j.epsr.2022.108351. Repositório Institucional UPT. http://hdl.handle.net/11328/4374http://hdl.handle.net/11328/4374https://doi.org/10.1016/j.epsr.2022.108351enghttps://www.sciencedirect.com/science/article/pii/S0378779622005107info:eu-repo/semantics/restrictedAccessinfo:eu-repo/semantics/openAccessJalali, Seyed M.J.Arora, PaulPanigrahi, B.K.Khosravi, AbbasNajavandi, SaeidCatalão, João P.S.Osório, Gerardo J.reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2025-01-09T02:07:57Zoai:repositorio.upt.pt:11328/4374Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T19:28:10.477405Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse
dc.title.none.fl_str_mv An advanced deep neuroevolution model for probabilistic load forecasting
title An advanced deep neuroevolution model for probabilistic load forecasting
spellingShingle An advanced deep neuroevolution model for probabilistic load forecasting
Jalali, Seyed M.J.
Deep learning
Neuroevolution
Probabilistic load forecasting
Optimization
title_short An advanced deep neuroevolution model for probabilistic load forecasting
title_full An advanced deep neuroevolution model for probabilistic load forecasting
title_fullStr An advanced deep neuroevolution model for probabilistic load forecasting
title_full_unstemmed An advanced deep neuroevolution model for probabilistic load forecasting
title_sort An advanced deep neuroevolution model for probabilistic load forecasting
author Jalali, Seyed M.J.
author_facet Jalali, Seyed M.J.
Arora, Paul
Panigrahi, B.K.
Khosravi, Abbas
Najavandi, Saeid
Catalão, João P.S.
Osório, Gerardo J.
author_role author
author2 Arora, Paul
Panigrahi, B.K.
Khosravi, Abbas
Najavandi, Saeid
Catalão, João P.S.
Osório, Gerardo J.
author2_role author
author
author
author
author
author
dc.contributor.author.fl_str_mv Jalali, Seyed M.J.
Arora, Paul
Panigrahi, B.K.
Khosravi, Abbas
Najavandi, Saeid
Catalão, João P.S.
Osório, Gerardo J.
dc.subject.por.fl_str_mv Deep learning
Neuroevolution
Probabilistic load forecasting
Optimization
topic Deep learning
Neuroevolution
Probabilistic load forecasting
Optimization
description Probabilistic load forecasting (PLF) is necessary for power system operations and control as it assists in proper scheduling and dispatch. Moreover, PLF adequately captures the uncertainty whether that uncertainty is related to load data or the forecasting model. And there are not many PLF models, and those which exist are very complex or difficult to interpret. This paper proposes a novel neuroevolution algorithm for handling the uncertainty associated with load forecasting. In this paper, a new modified evolutionary algorithm is proposed which is used to find the optimal hyperparameters of 1D-Convolutional neural network (CNN). The probabilistic forecasts are produced by minimizing the mean scaled interval score loss function at 50%, 90% and 95% prediction intervals. The proposed neuroevolution algorithm is tested on a global energy forecasting competition (GEFCom-2014) load dataset, and two different experiments are conducted considering load only and one with load and temperature. Strong conclusions are drawn from these experiments. Also, the proposed model is compared with other benchmark models, and it has been shown that it outperforms the other models.
publishDate 2022
dc.date.none.fl_str_mv 2022-07-29T10:51:07Z
2022-07-29
2022-07-13T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv Jalali, S. M. J., Arora, P., Panigrahi, B. K., Khosravi, A., Najavandi, S., Osório, G. J., & Catalão, J. P. S. (2022). An advanced deep neuroevolution model for probabilistic load forecasting. Electric Power Systems Research, 211(Article ID 108351), 1-7. https://doi.org/10.1016/j.epsr.2022.108351. Repositório Institucional UPT. http://hdl.handle.net/11328/4374
http://hdl.handle.net/11328/4374
Jalali, S. M. J., Arora, P., Panigrahi, B. K., Khosravi, A., Najavandi, S., Osório, G. J., & Catalão, J. P. S. (2022). An advanced deep neuroevolution model for probabilistic load forecasting. Electric Power Systems Research, 211(Article ID 108351), 1-7. https://doi.org/10.1016/j.epsr.2022.108351. Repositório Institucional UPT. http://hdl.handle.net/11328/4374
http://hdl.handle.net/11328/4374
https://doi.org/10.1016/j.epsr.2022.108351
identifier_str_mv Jalali, S. M. J., Arora, P., Panigrahi, B. K., Khosravi, A., Najavandi, S., Osório, G. J., & Catalão, J. P. S. (2022). An advanced deep neuroevolution model for probabilistic load forecasting. Electric Power Systems Research, 211(Article ID 108351), 1-7. https://doi.org/10.1016/j.epsr.2022.108351. Repositório Institucional UPT. http://hdl.handle.net/11328/4374
url http://hdl.handle.net/11328/4374
https://doi.org/10.1016/j.epsr.2022.108351
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv https://www.sciencedirect.com/science/article/pii/S0378779622005107
dc.rights.driver.fl_str_mv info:eu-repo/semantics/restrictedAccess
info:eu-repo/semantics/openAccess
eu_rights_str_mv restrictedAccess
openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Elsevier
publisher.none.fl_str_mv Elsevier
dc.source.none.fl_str_mv reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron:RCAAP
instname_str FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron_str RCAAP
institution RCAAP
reponame_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
collection Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository.name.fl_str_mv Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
repository.mail.fl_str_mv info@rcaap.pt
_version_ 1833598120343109632