An advanced deep neuroevolution model for probabilistic load forecasting
Main Author: | |
---|---|
Publication Date: | 2022 |
Other Authors: | , , , , , |
Format: | Article |
Language: | eng |
Source: | Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
Download full: | http://hdl.handle.net/11328/4374 https://doi.org/10.1016/j.epsr.2022.108351 |
Summary: | Probabilistic load forecasting (PLF) is necessary for power system operations and control as it assists in proper scheduling and dispatch. Moreover, PLF adequately captures the uncertainty whether that uncertainty is related to load data or the forecasting model. And there are not many PLF models, and those which exist are very complex or difficult to interpret. This paper proposes a novel neuroevolution algorithm for handling the uncertainty associated with load forecasting. In this paper, a new modified evolutionary algorithm is proposed which is used to find the optimal hyperparameters of 1D-Convolutional neural network (CNN). The probabilistic forecasts are produced by minimizing the mean scaled interval score loss function at 50%, 90% and 95% prediction intervals. The proposed neuroevolution algorithm is tested on a global energy forecasting competition (GEFCom-2014) load dataset, and two different experiments are conducted considering load only and one with load and temperature. Strong conclusions are drawn from these experiments. Also, the proposed model is compared with other benchmark models, and it has been shown that it outperforms the other models. |
id |
RCAP_a1307e1acffda2e3e030c2949c9c7050 |
---|---|
oai_identifier_str |
oai:repositorio.upt.pt:11328/4374 |
network_acronym_str |
RCAP |
network_name_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository_id_str |
https://opendoar.ac.uk/repository/7160 |
spelling |
An advanced deep neuroevolution model for probabilistic load forecastingDeep learningNeuroevolutionProbabilistic load forecastingOptimizationProbabilistic load forecasting (PLF) is necessary for power system operations and control as it assists in proper scheduling and dispatch. Moreover, PLF adequately captures the uncertainty whether that uncertainty is related to load data or the forecasting model. And there are not many PLF models, and those which exist are very complex or difficult to interpret. This paper proposes a novel neuroevolution algorithm for handling the uncertainty associated with load forecasting. In this paper, a new modified evolutionary algorithm is proposed which is used to find the optimal hyperparameters of 1D-Convolutional neural network (CNN). The probabilistic forecasts are produced by minimizing the mean scaled interval score loss function at 50%, 90% and 95% prediction intervals. The proposed neuroevolution algorithm is tested on a global energy forecasting competition (GEFCom-2014) load dataset, and two different experiments are conducted considering load only and one with load and temperature. Strong conclusions are drawn from these experiments. Also, the proposed model is compared with other benchmark models, and it has been shown that it outperforms the other models.Elsevier2022-07-29T10:51:07Z2022-07-292022-07-13T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfJalali, S. M. J., Arora, P., Panigrahi, B. K., Khosravi, A., Najavandi, S., Osório, G. J., & Catalão, J. P. S. (2022). An advanced deep neuroevolution model for probabilistic load forecasting. Electric Power Systems Research, 211(Article ID 108351), 1-7. https://doi.org/10.1016/j.epsr.2022.108351. Repositório Institucional UPT. http://hdl.handle.net/11328/4374http://hdl.handle.net/11328/4374Jalali, S. M. J., Arora, P., Panigrahi, B. K., Khosravi, A., Najavandi, S., Osório, G. J., & Catalão, J. P. S. (2022). An advanced deep neuroevolution model for probabilistic load forecasting. Electric Power Systems Research, 211(Article ID 108351), 1-7. https://doi.org/10.1016/j.epsr.2022.108351. Repositório Institucional UPT. http://hdl.handle.net/11328/4374http://hdl.handle.net/11328/4374https://doi.org/10.1016/j.epsr.2022.108351enghttps://www.sciencedirect.com/science/article/pii/S0378779622005107info:eu-repo/semantics/restrictedAccessinfo:eu-repo/semantics/openAccessJalali, Seyed M.J.Arora, PaulPanigrahi, B.K.Khosravi, AbbasNajavandi, SaeidCatalão, João P.S.Osório, Gerardo J.reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2025-01-09T02:07:57Zoai:repositorio.upt.pt:11328/4374Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T19:28:10.477405Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse |
dc.title.none.fl_str_mv |
An advanced deep neuroevolution model for probabilistic load forecasting |
title |
An advanced deep neuroevolution model for probabilistic load forecasting |
spellingShingle |
An advanced deep neuroevolution model for probabilistic load forecasting Jalali, Seyed M.J. Deep learning Neuroevolution Probabilistic load forecasting Optimization |
title_short |
An advanced deep neuroevolution model for probabilistic load forecasting |
title_full |
An advanced deep neuroevolution model for probabilistic load forecasting |
title_fullStr |
An advanced deep neuroevolution model for probabilistic load forecasting |
title_full_unstemmed |
An advanced deep neuroevolution model for probabilistic load forecasting |
title_sort |
An advanced deep neuroevolution model for probabilistic load forecasting |
author |
Jalali, Seyed M.J. |
author_facet |
Jalali, Seyed M.J. Arora, Paul Panigrahi, B.K. Khosravi, Abbas Najavandi, Saeid Catalão, João P.S. Osório, Gerardo J. |
author_role |
author |
author2 |
Arora, Paul Panigrahi, B.K. Khosravi, Abbas Najavandi, Saeid Catalão, João P.S. Osório, Gerardo J. |
author2_role |
author author author author author author |
dc.contributor.author.fl_str_mv |
Jalali, Seyed M.J. Arora, Paul Panigrahi, B.K. Khosravi, Abbas Najavandi, Saeid Catalão, João P.S. Osório, Gerardo J. |
dc.subject.por.fl_str_mv |
Deep learning Neuroevolution Probabilistic load forecasting Optimization |
topic |
Deep learning Neuroevolution Probabilistic load forecasting Optimization |
description |
Probabilistic load forecasting (PLF) is necessary for power system operations and control as it assists in proper scheduling and dispatch. Moreover, PLF adequately captures the uncertainty whether that uncertainty is related to load data or the forecasting model. And there are not many PLF models, and those which exist are very complex or difficult to interpret. This paper proposes a novel neuroevolution algorithm for handling the uncertainty associated with load forecasting. In this paper, a new modified evolutionary algorithm is proposed which is used to find the optimal hyperparameters of 1D-Convolutional neural network (CNN). The probabilistic forecasts are produced by minimizing the mean scaled interval score loss function at 50%, 90% and 95% prediction intervals. The proposed neuroevolution algorithm is tested on a global energy forecasting competition (GEFCom-2014) load dataset, and two different experiments are conducted considering load only and one with load and temperature. Strong conclusions are drawn from these experiments. Also, the proposed model is compared with other benchmark models, and it has been shown that it outperforms the other models. |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022-07-29T10:51:07Z 2022-07-29 2022-07-13T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
Jalali, S. M. J., Arora, P., Panigrahi, B. K., Khosravi, A., Najavandi, S., Osório, G. J., & Catalão, J. P. S. (2022). An advanced deep neuroevolution model for probabilistic load forecasting. Electric Power Systems Research, 211(Article ID 108351), 1-7. https://doi.org/10.1016/j.epsr.2022.108351. Repositório Institucional UPT. http://hdl.handle.net/11328/4374 http://hdl.handle.net/11328/4374 Jalali, S. M. J., Arora, P., Panigrahi, B. K., Khosravi, A., Najavandi, S., Osório, G. J., & Catalão, J. P. S. (2022). An advanced deep neuroevolution model for probabilistic load forecasting. Electric Power Systems Research, 211(Article ID 108351), 1-7. https://doi.org/10.1016/j.epsr.2022.108351. Repositório Institucional UPT. http://hdl.handle.net/11328/4374 http://hdl.handle.net/11328/4374 https://doi.org/10.1016/j.epsr.2022.108351 |
identifier_str_mv |
Jalali, S. M. J., Arora, P., Panigrahi, B. K., Khosravi, A., Najavandi, S., Osório, G. J., & Catalão, J. P. S. (2022). An advanced deep neuroevolution model for probabilistic load forecasting. Electric Power Systems Research, 211(Article ID 108351), 1-7. https://doi.org/10.1016/j.epsr.2022.108351. Repositório Institucional UPT. http://hdl.handle.net/11328/4374 |
url |
http://hdl.handle.net/11328/4374 https://doi.org/10.1016/j.epsr.2022.108351 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
https://www.sciencedirect.com/science/article/pii/S0378779622005107 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/restrictedAccess info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
restrictedAccess openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier |
publisher.none.fl_str_mv |
Elsevier |
dc.source.none.fl_str_mv |
reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia instacron:RCAAP |
instname_str |
FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
collection |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository.name.fl_str_mv |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
repository.mail.fl_str_mv |
info@rcaap.pt |
_version_ |
1833598120343109632 |