Fast solvers for tridiagonal Toeplitz linear systems

Bibliographic Details
Main Author: Liu, Zhongyun
Publication Date: 2020
Other Authors: Li, Shan, Yin, Yi, Zhang, Yulin
Format: Article
Language: eng
Source: Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
Download full: http://hdl.handle.net/1822/68832
Summary: Let A be a tridiagonal Toeplitz matrix denoted by A=Tritoep(β,α,γ). The matrix A is said to be: strictly diagonally dominant if |α|>|β|+|γ|, weakly diagonally dominant if |α|≥|β|+|γ|, subdiagonally dominant if |β|≥|α|+|γ|, and superdiagonally dominant if |γ|≥|α|+|β|. In this paper, we consider the solution of a tridiagonal Toeplitz system Ax=b, where A is subdiagonally dominant, superdiagonally dominant, or weakly diagonally dominant, respectively. We first consider the case of A being subdiagonally dominant. We transform A into a block 2×2 matrix by an elementary transformation and then solve such a linear system using the block LU factorization. Compared with the LU factorization method with pivoting, our algorithm takes less flops, and needs less memory storage and data transmission. In particular, our algorithm outperforms the LU factorization method with pivoting in terms of computing efficiency. Then, we deal with superdiagonally dominant and weakly diagonally dominant cases, respectively. Numerical experiments are finally given to illustrate the effectiveness of our algorithms
id RCAP_a069668d77a104d60a0df85053ecafda
oai_identifier_str oai:repositorium.sdum.uminho.pt:1822/68832
network_acronym_str RCAP
network_name_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository_id_str https://opendoar.ac.uk/repository/7160
spelling Fast solvers for tridiagonal Toeplitz linear systemsTridiagonal Toeplitz matricesDiagonally dominantSchur complementBlock LU factorizationPivoting15A2315B0565F0565F10Ciências Naturais::MatemáticasScience & TechnologyLet A be a tridiagonal Toeplitz matrix denoted by A=Tritoep(β,α,γ). The matrix A is said to be: strictly diagonally dominant if |α|>|β|+|γ|, weakly diagonally dominant if |α|≥|β|+|γ|, subdiagonally dominant if |β|≥|α|+|γ|, and superdiagonally dominant if |γ|≥|α|+|β|. In this paper, we consider the solution of a tridiagonal Toeplitz system Ax=b, where A is subdiagonally dominant, superdiagonally dominant, or weakly diagonally dominant, respectively. We first consider the case of A being subdiagonally dominant. We transform A into a block 2×2 matrix by an elementary transformation and then solve such a linear system using the block LU factorization. Compared with the LU factorization method with pivoting, our algorithm takes less flops, and needs less memory storage and data transmission. In particular, our algorithm outperforms the LU factorization method with pivoting in terms of computing efficiency. Then, we deal with superdiagonally dominant and weakly diagonally dominant cases, respectively. Numerical experiments are finally given to illustrate the effectiveness of our algorithmsNational Natural Science Foundation of China under Grant no. 11371075, the Hunan Key Laboratory of mathematical modeling and analysis in engineering, the research innovation program of Changsha University of Science and Technology for postgraduate students under Grant (CX2019SS34), and the Portuguese Funds through FCT-Fundação para a Ciência, within the Project UIDB/00013/2020 and UIDP/00013/2020SpringerUniversidade do MinhoLiu, ZhongyunLi, ShanYin, YiZhang, Yulin2020-112020-11-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/1822/68832eng0101-82051807-030210.1007/s40314-020-01369-3https://link.springer.com/article/10.1007/s40314-020-01369-3info:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2024-05-11T05:43:04Zoai:repositorium.sdum.uminho.pt:1822/68832Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T15:27:39.818251Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse
dc.title.none.fl_str_mv Fast solvers for tridiagonal Toeplitz linear systems
title Fast solvers for tridiagonal Toeplitz linear systems
spellingShingle Fast solvers for tridiagonal Toeplitz linear systems
Liu, Zhongyun
Tridiagonal Toeplitz matrices
Diagonally dominant
Schur complement
Block LU factorization
Pivoting
15A23
15B05
65F05
65F10
Ciências Naturais::Matemáticas
Science & Technology
title_short Fast solvers for tridiagonal Toeplitz linear systems
title_full Fast solvers for tridiagonal Toeplitz linear systems
title_fullStr Fast solvers for tridiagonal Toeplitz linear systems
title_full_unstemmed Fast solvers for tridiagonal Toeplitz linear systems
title_sort Fast solvers for tridiagonal Toeplitz linear systems
author Liu, Zhongyun
author_facet Liu, Zhongyun
Li, Shan
Yin, Yi
Zhang, Yulin
author_role author
author2 Li, Shan
Yin, Yi
Zhang, Yulin
author2_role author
author
author
dc.contributor.none.fl_str_mv Universidade do Minho
dc.contributor.author.fl_str_mv Liu, Zhongyun
Li, Shan
Yin, Yi
Zhang, Yulin
dc.subject.por.fl_str_mv Tridiagonal Toeplitz matrices
Diagonally dominant
Schur complement
Block LU factorization
Pivoting
15A23
15B05
65F05
65F10
Ciências Naturais::Matemáticas
Science & Technology
topic Tridiagonal Toeplitz matrices
Diagonally dominant
Schur complement
Block LU factorization
Pivoting
15A23
15B05
65F05
65F10
Ciências Naturais::Matemáticas
Science & Technology
description Let A be a tridiagonal Toeplitz matrix denoted by A=Tritoep(β,α,γ). The matrix A is said to be: strictly diagonally dominant if |α|>|β|+|γ|, weakly diagonally dominant if |α|≥|β|+|γ|, subdiagonally dominant if |β|≥|α|+|γ|, and superdiagonally dominant if |γ|≥|α|+|β|. In this paper, we consider the solution of a tridiagonal Toeplitz system Ax=b, where A is subdiagonally dominant, superdiagonally dominant, or weakly diagonally dominant, respectively. We first consider the case of A being subdiagonally dominant. We transform A into a block 2×2 matrix by an elementary transformation and then solve such a linear system using the block LU factorization. Compared with the LU factorization method with pivoting, our algorithm takes less flops, and needs less memory storage and data transmission. In particular, our algorithm outperforms the LU factorization method with pivoting in terms of computing efficiency. Then, we deal with superdiagonally dominant and weakly diagonally dominant cases, respectively. Numerical experiments are finally given to illustrate the effectiveness of our algorithms
publishDate 2020
dc.date.none.fl_str_mv 2020-11
2020-11-01T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/1822/68832
url http://hdl.handle.net/1822/68832
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 0101-8205
1807-0302
10.1007/s40314-020-01369-3
https://link.springer.com/article/10.1007/s40314-020-01369-3
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Springer
publisher.none.fl_str_mv Springer
dc.source.none.fl_str_mv reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron:RCAAP
instname_str FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron_str RCAAP
institution RCAAP
reponame_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
collection Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository.name.fl_str_mv Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
repository.mail.fl_str_mv info@rcaap.pt
_version_ 1833595329506705408