An advanced generative deep learning framework for probabilistic spatio-temporal wind power forecasting
Main Author: | |
---|---|
Publication Date: | 2021 |
Other Authors: | , , , , |
Language: | eng |
Source: | Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
Download full: | http://hdl.handle.net/11328/3920 https://doi.org/10.1109/EEEIC/ICPSEurope51590.2021.9584664 |
Summary: | This paper presents a deep generative model for capturing the conditional probability distribution of future wind power given its history by modeling and pattern recognition in a dynamic graph. The dynamic nodes show the wind sites while the dynamic edges reflect the correlation between the nodes. We propose a scalable optimization model, which is theoretically proved to catch distributions at nodes of the graph, contrary to all learning formulations in the sector of discriminatory pattern recognition. The density of probabilities for each node can be used as samples in our framework. This probabilistic deep convolutional Auto-encoder (PDCA), is based on the deep learning of localized first-order approximation of spectral graph convolutions, a novel evolutionary algorithm, and the Bayesian variational inference concepts. The presented generative model is used for the spatio-temporal probabilistic wind power problem in a wide 25 wind sites located in California, the USA for up to 24h ahead prediction. The experimental findings reveal that our proposed model outperforms other competitive temporal and spatio-temporal algorithms in terms of reliability, sharpness, and continuously ranked probability score. |
id |
RCAP_9ddc28c5104b0c11c72e67d2b8e09017 |
---|---|
oai_identifier_str |
oai:repositorio.upt.pt:11328/3920 |
network_acronym_str |
RCAP |
network_name_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository_id_str |
https://opendoar.ac.uk/repository/7160 |
spelling |
An advanced generative deep learning framework for probabilistic spatio-temporal wind power forecastingDeep learningProbabilistic forecastingVariational bayesian inferenceSpectral graph convulutionsEvolutionary algorithmThis paper presents a deep generative model for capturing the conditional probability distribution of future wind power given its history by modeling and pattern recognition in a dynamic graph. The dynamic nodes show the wind sites while the dynamic edges reflect the correlation between the nodes. We propose a scalable optimization model, which is theoretically proved to catch distributions at nodes of the graph, contrary to all learning formulations in the sector of discriminatory pattern recognition. The density of probabilities for each node can be used as samples in our framework. This probabilistic deep convolutional Auto-encoder (PDCA), is based on the deep learning of localized first-order approximation of spectral graph convolutions, a novel evolutionary algorithm, and the Bayesian variational inference concepts. The presented generative model is used for the spatio-temporal probabilistic wind power problem in a wide 25 wind sites located in California, the USA for up to 24h ahead prediction. The experimental findings reveal that our proposed model outperforms other competitive temporal and spatio-temporal algorithms in terms of reliability, sharpness, and continuously ranked probability score.IEEE2022-02-01T12:41:29Z2022-02-012021-09-01T00:00:00Zconference objectinfo:eu-repo/semantics/publishedVersionapplication/pdfJalali, S. M., Khodayar, M, Khosravi, A., Osório, G. J., Nahavandi, S., & Catalão, J. P. S. (2021). An advanced generative deep learning framework for probabilistic spatio-temporal wind power forecasting. In Proceedings of the 21th IEEE International Conference on Environment and Electrical Engineering and 5th IEEE Industrial and Commercial Power Systems Europe (EEEIC 2021 / I&CPS Europe 2021), Bari, Italy, 7-10 September 2021 (pp. 1-6). doi: 10.1109/EEEIC/ICPSEurope51590.2021.9584664. Disponível no Repositório UPT, http://hdl.handle.net/11328/3920http://hdl.handle.net/11328/3920Jalali, S. M., Khodayar, M, Khosravi, A., Osório, G. J., Nahavandi, S., & Catalão, J. P. S. (2021). An advanced generative deep learning framework for probabilistic spatio-temporal wind power forecasting. In Proceedings of the 21th IEEE International Conference on Environment and Electrical Engineering and 5th IEEE Industrial and Commercial Power Systems Europe (EEEIC 2021 / I&CPS Europe 2021), Bari, Italy, 7-10 September 2021 (pp. 1-6). doi: 10.1109/EEEIC/ICPSEurope51590.2021.9584664. Disponível no Repositório UPT, http://hdl.handle.net/11328/3920http://hdl.handle.net/11328/3920https://doi.org/10.1109/EEEIC/ICPSEurope51590.2021.9584664eng978-1-6654-3613-7https://doi.org/10.1109/EEEIC/ICPSEurope51590.2021.9584664info:eu-repo/semantics/restrictedAccessinfo:eu-repo/semantics/openAccessJalali, S. M.Khodayar, M.Khosravi, A.Nahavandi, S.Catalão, João P. S.Osório, Gerardo J.reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2025-01-09T02:14:02Zoai:repositorio.upt.pt:11328/3920Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T19:32:09.996044Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse |
dc.title.none.fl_str_mv |
An advanced generative deep learning framework for probabilistic spatio-temporal wind power forecasting |
title |
An advanced generative deep learning framework for probabilistic spatio-temporal wind power forecasting |
spellingShingle |
An advanced generative deep learning framework for probabilistic spatio-temporal wind power forecasting Jalali, S. M. Deep learning Probabilistic forecasting Variational bayesian inference Spectral graph convulutions Evolutionary algorithm |
title_short |
An advanced generative deep learning framework for probabilistic spatio-temporal wind power forecasting |
title_full |
An advanced generative deep learning framework for probabilistic spatio-temporal wind power forecasting |
title_fullStr |
An advanced generative deep learning framework for probabilistic spatio-temporal wind power forecasting |
title_full_unstemmed |
An advanced generative deep learning framework for probabilistic spatio-temporal wind power forecasting |
title_sort |
An advanced generative deep learning framework for probabilistic spatio-temporal wind power forecasting |
author |
Jalali, S. M. |
author_facet |
Jalali, S. M. Khodayar, M. Khosravi, A. Nahavandi, S. Catalão, João P. S. Osório, Gerardo J. |
author_role |
author |
author2 |
Khodayar, M. Khosravi, A. Nahavandi, S. Catalão, João P. S. Osório, Gerardo J. |
author2_role |
author author author author author |
dc.contributor.author.fl_str_mv |
Jalali, S. M. Khodayar, M. Khosravi, A. Nahavandi, S. Catalão, João P. S. Osório, Gerardo J. |
dc.subject.por.fl_str_mv |
Deep learning Probabilistic forecasting Variational bayesian inference Spectral graph convulutions Evolutionary algorithm |
topic |
Deep learning Probabilistic forecasting Variational bayesian inference Spectral graph convulutions Evolutionary algorithm |
description |
This paper presents a deep generative model for capturing the conditional probability distribution of future wind power given its history by modeling and pattern recognition in a dynamic graph. The dynamic nodes show the wind sites while the dynamic edges reflect the correlation between the nodes. We propose a scalable optimization model, which is theoretically proved to catch distributions at nodes of the graph, contrary to all learning formulations in the sector of discriminatory pattern recognition. The density of probabilities for each node can be used as samples in our framework. This probabilistic deep convolutional Auto-encoder (PDCA), is based on the deep learning of localized first-order approximation of spectral graph convolutions, a novel evolutionary algorithm, and the Bayesian variational inference concepts. The presented generative model is used for the spatio-temporal probabilistic wind power problem in a wide 25 wind sites located in California, the USA for up to 24h ahead prediction. The experimental findings reveal that our proposed model outperforms other competitive temporal and spatio-temporal algorithms in terms of reliability, sharpness, and continuously ranked probability score. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-09-01T00:00:00Z 2022-02-01T12:41:29Z 2022-02-01 |
dc.type.driver.fl_str_mv |
conference object |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
Jalali, S. M., Khodayar, M, Khosravi, A., Osório, G. J., Nahavandi, S., & Catalão, J. P. S. (2021). An advanced generative deep learning framework for probabilistic spatio-temporal wind power forecasting. In Proceedings of the 21th IEEE International Conference on Environment and Electrical Engineering and 5th IEEE Industrial and Commercial Power Systems Europe (EEEIC 2021 / I&CPS Europe 2021), Bari, Italy, 7-10 September 2021 (pp. 1-6). doi: 10.1109/EEEIC/ICPSEurope51590.2021.9584664. Disponível no Repositório UPT, http://hdl.handle.net/11328/3920 http://hdl.handle.net/11328/3920 Jalali, S. M., Khodayar, M, Khosravi, A., Osório, G. J., Nahavandi, S., & Catalão, J. P. S. (2021). An advanced generative deep learning framework for probabilistic spatio-temporal wind power forecasting. In Proceedings of the 21th IEEE International Conference on Environment and Electrical Engineering and 5th IEEE Industrial and Commercial Power Systems Europe (EEEIC 2021 / I&CPS Europe 2021), Bari, Italy, 7-10 September 2021 (pp. 1-6). doi: 10.1109/EEEIC/ICPSEurope51590.2021.9584664. Disponível no Repositório UPT, http://hdl.handle.net/11328/3920 http://hdl.handle.net/11328/3920 https://doi.org/10.1109/EEEIC/ICPSEurope51590.2021.9584664 |
identifier_str_mv |
Jalali, S. M., Khodayar, M, Khosravi, A., Osório, G. J., Nahavandi, S., & Catalão, J. P. S. (2021). An advanced generative deep learning framework for probabilistic spatio-temporal wind power forecasting. In Proceedings of the 21th IEEE International Conference on Environment and Electrical Engineering and 5th IEEE Industrial and Commercial Power Systems Europe (EEEIC 2021 / I&CPS Europe 2021), Bari, Italy, 7-10 September 2021 (pp. 1-6). doi: 10.1109/EEEIC/ICPSEurope51590.2021.9584664. Disponível no Repositório UPT, http://hdl.handle.net/11328/3920 |
url |
http://hdl.handle.net/11328/3920 https://doi.org/10.1109/EEEIC/ICPSEurope51590.2021.9584664 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
978-1-6654-3613-7 https://doi.org/10.1109/EEEIC/ICPSEurope51590.2021.9584664 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/restrictedAccess info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
restrictedAccess openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
IEEE |
publisher.none.fl_str_mv |
IEEE |
dc.source.none.fl_str_mv |
reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia instacron:RCAAP |
instname_str |
FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
collection |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository.name.fl_str_mv |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
repository.mail.fl_str_mv |
info@rcaap.pt |
_version_ |
1833598159313436672 |