An advanced generative deep learning framework for probabilistic spatio-temporal wind power forecasting

Bibliographic Details
Main Author: Jalali, S. M.
Publication Date: 2021
Other Authors: Khodayar, M., Khosravi, A., Nahavandi, S., Catalão, João P. S., Osório, Gerardo J.
Language: eng
Source: Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
Download full: http://hdl.handle.net/11328/3920
https://doi.org/10.1109/EEEIC/ICPSEurope51590.2021.9584664
Summary: This paper presents a deep generative model for capturing the conditional probability distribution of future wind power given its history by modeling and pattern recognition in a dynamic graph. The dynamic nodes show the wind sites while the dynamic edges reflect the correlation between the nodes. We propose a scalable optimization model, which is theoretically proved to catch distributions at nodes of the graph, contrary to all learning formulations in the sector of discriminatory pattern recognition. The density of probabilities for each node can be used as samples in our framework. This probabilistic deep convolutional Auto-encoder (PDCA), is based on the deep learning of localized first-order approximation of spectral graph convolutions, a novel evolutionary algorithm, and the Bayesian variational inference concepts. The presented generative model is used for the spatio-temporal probabilistic wind power problem in a wide 25 wind sites located in California, the USA for up to 24h ahead prediction. The experimental findings reveal that our proposed model outperforms other competitive temporal and spatio-temporal algorithms in terms of reliability, sharpness, and continuously ranked probability score.
id RCAP_9ddc28c5104b0c11c72e67d2b8e09017
oai_identifier_str oai:repositorio.upt.pt:11328/3920
network_acronym_str RCAP
network_name_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository_id_str https://opendoar.ac.uk/repository/7160
spelling An advanced generative deep learning framework for probabilistic spatio-temporal wind power forecastingDeep learningProbabilistic forecastingVariational bayesian inferenceSpectral graph convulutionsEvolutionary algorithmThis paper presents a deep generative model for capturing the conditional probability distribution of future wind power given its history by modeling and pattern recognition in a dynamic graph. The dynamic nodes show the wind sites while the dynamic edges reflect the correlation between the nodes. We propose a scalable optimization model, which is theoretically proved to catch distributions at nodes of the graph, contrary to all learning formulations in the sector of discriminatory pattern recognition. The density of probabilities for each node can be used as samples in our framework. This probabilistic deep convolutional Auto-encoder (PDCA), is based on the deep learning of localized first-order approximation of spectral graph convolutions, a novel evolutionary algorithm, and the Bayesian variational inference concepts. The presented generative model is used for the spatio-temporal probabilistic wind power problem in a wide 25 wind sites located in California, the USA for up to 24h ahead prediction. The experimental findings reveal that our proposed model outperforms other competitive temporal and spatio-temporal algorithms in terms of reliability, sharpness, and continuously ranked probability score.IEEE2022-02-01T12:41:29Z2022-02-012021-09-01T00:00:00Zconference objectinfo:eu-repo/semantics/publishedVersionapplication/pdfJalali, S. M., Khodayar, M, Khosravi, A., Osório, G. J., Nahavandi, S., & Catalão, J. P. S. (2021). An advanced generative deep learning framework for probabilistic spatio-temporal wind power forecasting. In Proceedings of the 21th IEEE International Conference on Environment and Electrical Engineering and 5th IEEE Industrial and Commercial Power Systems Europe (EEEIC 2021 / I&CPS Europe 2021), Bari, Italy, 7-10 September 2021 (pp. 1-6). doi: 10.1109/EEEIC/ICPSEurope51590.2021.9584664. Disponível no Repositório UPT, http://hdl.handle.net/11328/3920http://hdl.handle.net/11328/3920Jalali, S. M., Khodayar, M, Khosravi, A., Osório, G. J., Nahavandi, S., & Catalão, J. P. S. (2021). An advanced generative deep learning framework for probabilistic spatio-temporal wind power forecasting. In Proceedings of the 21th IEEE International Conference on Environment and Electrical Engineering and 5th IEEE Industrial and Commercial Power Systems Europe (EEEIC 2021 / I&CPS Europe 2021), Bari, Italy, 7-10 September 2021 (pp. 1-6). doi: 10.1109/EEEIC/ICPSEurope51590.2021.9584664. Disponível no Repositório UPT, http://hdl.handle.net/11328/3920http://hdl.handle.net/11328/3920https://doi.org/10.1109/EEEIC/ICPSEurope51590.2021.9584664eng978-1-6654-3613-7https://doi.org/10.1109/EEEIC/ICPSEurope51590.2021.9584664info:eu-repo/semantics/restrictedAccessinfo:eu-repo/semantics/openAccessJalali, S. M.Khodayar, M.Khosravi, A.Nahavandi, S.Catalão, João P. S.Osório, Gerardo J.reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2025-01-09T02:14:02Zoai:repositorio.upt.pt:11328/3920Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T19:32:09.996044Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse
dc.title.none.fl_str_mv An advanced generative deep learning framework for probabilistic spatio-temporal wind power forecasting
title An advanced generative deep learning framework for probabilistic spatio-temporal wind power forecasting
spellingShingle An advanced generative deep learning framework for probabilistic spatio-temporal wind power forecasting
Jalali, S. M.
Deep learning
Probabilistic forecasting
Variational bayesian inference
Spectral graph convulutions
Evolutionary algorithm
title_short An advanced generative deep learning framework for probabilistic spatio-temporal wind power forecasting
title_full An advanced generative deep learning framework for probabilistic spatio-temporal wind power forecasting
title_fullStr An advanced generative deep learning framework for probabilistic spatio-temporal wind power forecasting
title_full_unstemmed An advanced generative deep learning framework for probabilistic spatio-temporal wind power forecasting
title_sort An advanced generative deep learning framework for probabilistic spatio-temporal wind power forecasting
author Jalali, S. M.
author_facet Jalali, S. M.
Khodayar, M.
Khosravi, A.
Nahavandi, S.
Catalão, João P. S.
Osório, Gerardo J.
author_role author
author2 Khodayar, M.
Khosravi, A.
Nahavandi, S.
Catalão, João P. S.
Osório, Gerardo J.
author2_role author
author
author
author
author
dc.contributor.author.fl_str_mv Jalali, S. M.
Khodayar, M.
Khosravi, A.
Nahavandi, S.
Catalão, João P. S.
Osório, Gerardo J.
dc.subject.por.fl_str_mv Deep learning
Probabilistic forecasting
Variational bayesian inference
Spectral graph convulutions
Evolutionary algorithm
topic Deep learning
Probabilistic forecasting
Variational bayesian inference
Spectral graph convulutions
Evolutionary algorithm
description This paper presents a deep generative model for capturing the conditional probability distribution of future wind power given its history by modeling and pattern recognition in a dynamic graph. The dynamic nodes show the wind sites while the dynamic edges reflect the correlation between the nodes. We propose a scalable optimization model, which is theoretically proved to catch distributions at nodes of the graph, contrary to all learning formulations in the sector of discriminatory pattern recognition. The density of probabilities for each node can be used as samples in our framework. This probabilistic deep convolutional Auto-encoder (PDCA), is based on the deep learning of localized first-order approximation of spectral graph convolutions, a novel evolutionary algorithm, and the Bayesian variational inference concepts. The presented generative model is used for the spatio-temporal probabilistic wind power problem in a wide 25 wind sites located in California, the USA for up to 24h ahead prediction. The experimental findings reveal that our proposed model outperforms other competitive temporal and spatio-temporal algorithms in terms of reliability, sharpness, and continuously ranked probability score.
publishDate 2021
dc.date.none.fl_str_mv 2021-09-01T00:00:00Z
2022-02-01T12:41:29Z
2022-02-01
dc.type.driver.fl_str_mv conference object
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
status_str publishedVersion
dc.identifier.uri.fl_str_mv Jalali, S. M., Khodayar, M, Khosravi, A., Osório, G. J., Nahavandi, S., & Catalão, J. P. S. (2021). An advanced generative deep learning framework for probabilistic spatio-temporal wind power forecasting. In Proceedings of the 21th IEEE International Conference on Environment and Electrical Engineering and 5th IEEE Industrial and Commercial Power Systems Europe (EEEIC 2021 / I&CPS Europe 2021), Bari, Italy, 7-10 September 2021 (pp. 1-6). doi: 10.1109/EEEIC/ICPSEurope51590.2021.9584664. Disponível no Repositório UPT, http://hdl.handle.net/11328/3920
http://hdl.handle.net/11328/3920
Jalali, S. M., Khodayar, M, Khosravi, A., Osório, G. J., Nahavandi, S., & Catalão, J. P. S. (2021). An advanced generative deep learning framework for probabilistic spatio-temporal wind power forecasting. In Proceedings of the 21th IEEE International Conference on Environment and Electrical Engineering and 5th IEEE Industrial and Commercial Power Systems Europe (EEEIC 2021 / I&CPS Europe 2021), Bari, Italy, 7-10 September 2021 (pp. 1-6). doi: 10.1109/EEEIC/ICPSEurope51590.2021.9584664. Disponível no Repositório UPT, http://hdl.handle.net/11328/3920
http://hdl.handle.net/11328/3920
https://doi.org/10.1109/EEEIC/ICPSEurope51590.2021.9584664
identifier_str_mv Jalali, S. M., Khodayar, M, Khosravi, A., Osório, G. J., Nahavandi, S., & Catalão, J. P. S. (2021). An advanced generative deep learning framework for probabilistic spatio-temporal wind power forecasting. In Proceedings of the 21th IEEE International Conference on Environment and Electrical Engineering and 5th IEEE Industrial and Commercial Power Systems Europe (EEEIC 2021 / I&CPS Europe 2021), Bari, Italy, 7-10 September 2021 (pp. 1-6). doi: 10.1109/EEEIC/ICPSEurope51590.2021.9584664. Disponível no Repositório UPT, http://hdl.handle.net/11328/3920
url http://hdl.handle.net/11328/3920
https://doi.org/10.1109/EEEIC/ICPSEurope51590.2021.9584664
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 978-1-6654-3613-7
https://doi.org/10.1109/EEEIC/ICPSEurope51590.2021.9584664
dc.rights.driver.fl_str_mv info:eu-repo/semantics/restrictedAccess
info:eu-repo/semantics/openAccess
eu_rights_str_mv restrictedAccess
openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv IEEE
publisher.none.fl_str_mv IEEE
dc.source.none.fl_str_mv reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron:RCAAP
instname_str FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron_str RCAAP
institution RCAAP
reponame_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
collection Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository.name.fl_str_mv Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
repository.mail.fl_str_mv info@rcaap.pt
_version_ 1833598159313436672