Export Ready — 

Laguerre polynomials in several hypercomplex variables and their matrix representation

Bibliographic Details
Main Author: Malonek, Helmuth Robert
Publication Date: 2011
Other Authors: Tomaz, Graça
Language: eng
Source: Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
Download full: http://hdl.handle.net/10773/15313
Summary: Recently the creation matrix, intimately related to the Pascal matrix and its generalizations, has been used to develop matrix representations of special polynomials, in particular Appell polynomials. In this paper we describe a matrix approach to polynomials in several hypercomplex variables based on special block matrices whose structures simulate the creation matrix and the Pascal matrix. We apply the approach to hypercomplex Laguerre polynomials, although it can be used for other Appell sequences, too.
id RCAP_9dda4c7598f10f8de1893a212e60e81b
oai_identifier_str oai:ria.ua.pt:10773/15313
network_acronym_str RCAP
network_name_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository_id_str https://opendoar.ac.uk/repository/7160
spelling Laguerre polynomials in several hypercomplex variables and their matrix representationHypercomplex Laguerre polynomialsBlock creation matrixBlock Pascal matrixRecently the creation matrix, intimately related to the Pascal matrix and its generalizations, has been used to develop matrix representations of special polynomials, in particular Appell polynomials. In this paper we describe a matrix approach to polynomials in several hypercomplex variables based on special block matrices whose structures simulate the creation matrix and the Pascal matrix. We apply the approach to hypercomplex Laguerre polynomials, although it can be used for other Appell sequences, too.Springer Berlin Heidelberg2016-03-16T15:00:15Z2011-01-01T00:00:00Z2011conference objectinfo:eu-repo/semantics/publishedVersionapplication/pdfhttp://hdl.handle.net/10773/15313eng978-3-642-21930-60302-974310.1007/978-3-642-21931-3_21Malonek, Helmuth RobertTomaz, Graçainfo:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2024-05-06T03:56:15Zoai:ria.ua.pt:10773/15313Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T13:51:33.473998Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse
dc.title.none.fl_str_mv Laguerre polynomials in several hypercomplex variables and their matrix representation
title Laguerre polynomials in several hypercomplex variables and their matrix representation
spellingShingle Laguerre polynomials in several hypercomplex variables and their matrix representation
Malonek, Helmuth Robert
Hypercomplex Laguerre polynomials
Block creation matrix
Block Pascal matrix
title_short Laguerre polynomials in several hypercomplex variables and their matrix representation
title_full Laguerre polynomials in several hypercomplex variables and their matrix representation
title_fullStr Laguerre polynomials in several hypercomplex variables and their matrix representation
title_full_unstemmed Laguerre polynomials in several hypercomplex variables and their matrix representation
title_sort Laguerre polynomials in several hypercomplex variables and their matrix representation
author Malonek, Helmuth Robert
author_facet Malonek, Helmuth Robert
Tomaz, Graça
author_role author
author2 Tomaz, Graça
author2_role author
dc.contributor.author.fl_str_mv Malonek, Helmuth Robert
Tomaz, Graça
dc.subject.por.fl_str_mv Hypercomplex Laguerre polynomials
Block creation matrix
Block Pascal matrix
topic Hypercomplex Laguerre polynomials
Block creation matrix
Block Pascal matrix
description Recently the creation matrix, intimately related to the Pascal matrix and its generalizations, has been used to develop matrix representations of special polynomials, in particular Appell polynomials. In this paper we describe a matrix approach to polynomials in several hypercomplex variables based on special block matrices whose structures simulate the creation matrix and the Pascal matrix. We apply the approach to hypercomplex Laguerre polynomials, although it can be used for other Appell sequences, too.
publishDate 2011
dc.date.none.fl_str_mv 2011-01-01T00:00:00Z
2011
2016-03-16T15:00:15Z
dc.type.driver.fl_str_mv conference object
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10773/15313
url http://hdl.handle.net/10773/15313
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 978-3-642-21930-6
0302-9743
10.1007/978-3-642-21931-3_21
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Springer Berlin Heidelberg
publisher.none.fl_str_mv Springer Berlin Heidelberg
dc.source.none.fl_str_mv reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron:RCAAP
instname_str FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron_str RCAAP
institution RCAAP
reponame_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
collection Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository.name.fl_str_mv Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
repository.mail.fl_str_mv info@rcaap.pt
_version_ 1833594137127944192