Matrix representation of real and hypercomplex Appell polynomials

Bibliographic Details
Main Author: Tomaz, Graça
Publication Date: 2015
Other Authors: Malonek, H. R.
Language: eng
Source: Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
Download full: http://hdl.handle.net/10314/3244
Summary: In a unfied approach to the matrix representation of di erent types of real Appell polynomials was developed, based on a special matrix which has only the natural numbers as entries. This matrix, also called creation matrix, generates the Pascal matrix and allows to consider a set of Appell polynomials as solution of a rst order vector di erential equation with certain initial conditions. Besides a new elementary construction of the monogenic exponential function studied in, we analogously derive examples of di erent sets of non-homogenous hypercomplex Appell polynomials given by its matrix representation.
id RCAP_3d24757921086a0dc9e4e93457a57fe0
oai_identifier_str oai:bdigital.ipg.pt:10314/3244
network_acronym_str RCAP
network_name_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository_id_str https://opendoar.ac.uk/repository/7160
spelling Matrix representation of real and hypercomplex Appell polynomialsCreation matrixGenerating functionMatrix representation of Appell polynomialsHypercomplex appell polynomialsIn a unfied approach to the matrix representation of di erent types of real Appell polynomials was developed, based on a special matrix which has only the natural numbers as entries. This matrix, also called creation matrix, generates the Pascal matrix and allows to consider a set of Appell polynomials as solution of a rst order vector di erential equation with certain initial conditions. Besides a new elementary construction of the monogenic exponential function studied in, we analogously derive examples of di erent sets of non-homogenous hypercomplex Appell polynomials given by its matrix representation.2016-11-18T20:09:53Z2016-11-182015-06-01T00:00:00Zconference objectinfo:eu-repo/semantics/publishedVersionhttp://hdl.handle.net/10314/3244http://hdl.handle.net/10314/3244engTomaz, GraçaMalonek, H. R.info:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2025-01-05T02:58:52Zoai:bdigital.ipg.pt:10314/3244Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T19:24:09.602024Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse
dc.title.none.fl_str_mv Matrix representation of real and hypercomplex Appell polynomials
title Matrix representation of real and hypercomplex Appell polynomials
spellingShingle Matrix representation of real and hypercomplex Appell polynomials
Tomaz, Graça
Creation matrix
Generating function
Matrix representation of Appell polynomials
Hypercomplex appell polynomials
title_short Matrix representation of real and hypercomplex Appell polynomials
title_full Matrix representation of real and hypercomplex Appell polynomials
title_fullStr Matrix representation of real and hypercomplex Appell polynomials
title_full_unstemmed Matrix representation of real and hypercomplex Appell polynomials
title_sort Matrix representation of real and hypercomplex Appell polynomials
author Tomaz, Graça
author_facet Tomaz, Graça
Malonek, H. R.
author_role author
author2 Malonek, H. R.
author2_role author
dc.contributor.author.fl_str_mv Tomaz, Graça
Malonek, H. R.
dc.subject.por.fl_str_mv Creation matrix
Generating function
Matrix representation of Appell polynomials
Hypercomplex appell polynomials
topic Creation matrix
Generating function
Matrix representation of Appell polynomials
Hypercomplex appell polynomials
description In a unfied approach to the matrix representation of di erent types of real Appell polynomials was developed, based on a special matrix which has only the natural numbers as entries. This matrix, also called creation matrix, generates the Pascal matrix and allows to consider a set of Appell polynomials as solution of a rst order vector di erential equation with certain initial conditions. Besides a new elementary construction of the monogenic exponential function studied in, we analogously derive examples of di erent sets of non-homogenous hypercomplex Appell polynomials given by its matrix representation.
publishDate 2015
dc.date.none.fl_str_mv 2015-06-01T00:00:00Z
2016-11-18T20:09:53Z
2016-11-18
dc.type.driver.fl_str_mv conference object
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10314/3244
http://hdl.handle.net/10314/3244
url http://hdl.handle.net/10314/3244
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.source.none.fl_str_mv reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron:RCAAP
instname_str FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron_str RCAAP
institution RCAAP
reponame_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
collection Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository.name.fl_str_mv Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
repository.mail.fl_str_mv info@rcaap.pt
_version_ 1833598073743343616