Matrix representation of real and hypercomplex Appell polynomials
Main Author: | |
---|---|
Publication Date: | 2015 |
Other Authors: | |
Language: | eng |
Source: | Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
Download full: | http://hdl.handle.net/10314/3244 |
Summary: | In a unfied approach to the matrix representation of di erent types of real Appell polynomials was developed, based on a special matrix which has only the natural numbers as entries. This matrix, also called creation matrix, generates the Pascal matrix and allows to consider a set of Appell polynomials as solution of a rst order vector di erential equation with certain initial conditions. Besides a new elementary construction of the monogenic exponential function studied in, we analogously derive examples of di erent sets of non-homogenous hypercomplex Appell polynomials given by its matrix representation. |
id |
RCAP_3d24757921086a0dc9e4e93457a57fe0 |
---|---|
oai_identifier_str |
oai:bdigital.ipg.pt:10314/3244 |
network_acronym_str |
RCAP |
network_name_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository_id_str |
https://opendoar.ac.uk/repository/7160 |
spelling |
Matrix representation of real and hypercomplex Appell polynomialsCreation matrixGenerating functionMatrix representation of Appell polynomialsHypercomplex appell polynomialsIn a unfied approach to the matrix representation of di erent types of real Appell polynomials was developed, based on a special matrix which has only the natural numbers as entries. This matrix, also called creation matrix, generates the Pascal matrix and allows to consider a set of Appell polynomials as solution of a rst order vector di erential equation with certain initial conditions. Besides a new elementary construction of the monogenic exponential function studied in, we analogously derive examples of di erent sets of non-homogenous hypercomplex Appell polynomials given by its matrix representation.2016-11-18T20:09:53Z2016-11-182015-06-01T00:00:00Zconference objectinfo:eu-repo/semantics/publishedVersionhttp://hdl.handle.net/10314/3244http://hdl.handle.net/10314/3244engTomaz, GraçaMalonek, H. R.info:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2025-01-05T02:58:52Zoai:bdigital.ipg.pt:10314/3244Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T19:24:09.602024Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse |
dc.title.none.fl_str_mv |
Matrix representation of real and hypercomplex Appell polynomials |
title |
Matrix representation of real and hypercomplex Appell polynomials |
spellingShingle |
Matrix representation of real and hypercomplex Appell polynomials Tomaz, Graça Creation matrix Generating function Matrix representation of Appell polynomials Hypercomplex appell polynomials |
title_short |
Matrix representation of real and hypercomplex Appell polynomials |
title_full |
Matrix representation of real and hypercomplex Appell polynomials |
title_fullStr |
Matrix representation of real and hypercomplex Appell polynomials |
title_full_unstemmed |
Matrix representation of real and hypercomplex Appell polynomials |
title_sort |
Matrix representation of real and hypercomplex Appell polynomials |
author |
Tomaz, Graça |
author_facet |
Tomaz, Graça Malonek, H. R. |
author_role |
author |
author2 |
Malonek, H. R. |
author2_role |
author |
dc.contributor.author.fl_str_mv |
Tomaz, Graça Malonek, H. R. |
dc.subject.por.fl_str_mv |
Creation matrix Generating function Matrix representation of Appell polynomials Hypercomplex appell polynomials |
topic |
Creation matrix Generating function Matrix representation of Appell polynomials Hypercomplex appell polynomials |
description |
In a unfied approach to the matrix representation of di erent types of real Appell polynomials was developed, based on a special matrix which has only the natural numbers as entries. This matrix, also called creation matrix, generates the Pascal matrix and allows to consider a set of Appell polynomials as solution of a rst order vector di erential equation with certain initial conditions. Besides a new elementary construction of the monogenic exponential function studied in, we analogously derive examples of di erent sets of non-homogenous hypercomplex Appell polynomials given by its matrix representation. |
publishDate |
2015 |
dc.date.none.fl_str_mv |
2015-06-01T00:00:00Z 2016-11-18T20:09:53Z 2016-11-18 |
dc.type.driver.fl_str_mv |
conference object |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10314/3244 http://hdl.handle.net/10314/3244 |
url |
http://hdl.handle.net/10314/3244 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.source.none.fl_str_mv |
reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia instacron:RCAAP |
instname_str |
FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
collection |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository.name.fl_str_mv |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
repository.mail.fl_str_mv |
info@rcaap.pt |
_version_ |
1833598073743343616 |