Metalearning approach for leukemia informative genes prioritization

Bibliographic Details
Main Author: Rodrigues, Vânia
Publication Date: 2018
Other Authors: Deusdado, Sérgio
Format: Article
Language: eng
Source: Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
Download full: http://hdl.handle.net/10198/23416
Summary: The discovery of diagnostic or prognostic biomarkers is fundamental to optimize therapeutics for patients. By enhancing the interpretability of the prediction model, this work is aimed to optimize Leukemia diagnosis while retaining a high-performance evaluation in the identification of informative genes. For this purpose, we used an optimal parameterization of Kernel Logistic Regression method on Leukemia microarray gene expression data classification, applying metalearners to select attributes, reducing the data dimensionality before passing it to the classifier. Pearson correlation and chi-squared statistic were the attribute evaluators applied on metalearners, having information gain as single-attribute evaluator. The implemented models relied on 10-fold cross-validation. The metalearners approach identified 12 common genes, with highest average merit of 0.999. The practical work was developed using the public datamining software WEKA.
id RCAP_9ac24fd36ff9165bb5bff012f795e8f8
oai_identifier_str oai:bibliotecadigital.ipb.pt:10198/23416
network_acronym_str RCAP
network_name_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository_id_str https://opendoar.ac.uk/repository/7160
spelling Metalearning approach for leukemia informative genes prioritizationinformative genesleukemiamachine learningmetalearningmicroarrayThe discovery of diagnostic or prognostic biomarkers is fundamental to optimize therapeutics for patients. By enhancing the interpretability of the prediction model, this work is aimed to optimize Leukemia diagnosis while retaining a high-performance evaluation in the identification of informative genes. For this purpose, we used an optimal parameterization of Kernel Logistic Regression method on Leukemia microarray gene expression data classification, applying metalearners to select attributes, reducing the data dimensionality before passing it to the classifier. Pearson correlation and chi-squared statistic were the attribute evaluators applied on metalearners, having information gain as single-attribute evaluator. The implemented models relied on 10-fold cross-validation. The metalearners approach identified 12 common genes, with highest average merit of 0.999. The practical work was developed using the public datamining software WEKA.Biblioteca Digital do IPBRodrigues, VâniaDeusdado, SérgioRodrigues, Vânia2018-01-19T10:00:00Z20202020-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10198/23416eng10.1515/jib-2019-0069info:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2025-05-07T01:18:34Zoai:bibliotecadigital.ipb.pt:10198/23416Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T11:40:59.318707Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse
dc.title.none.fl_str_mv Metalearning approach for leukemia informative genes prioritization
title Metalearning approach for leukemia informative genes prioritization
spellingShingle Metalearning approach for leukemia informative genes prioritization
Rodrigues, Vânia
informative genes
leukemia
machine learning
metalearning
microarray
title_short Metalearning approach for leukemia informative genes prioritization
title_full Metalearning approach for leukemia informative genes prioritization
title_fullStr Metalearning approach for leukemia informative genes prioritization
title_full_unstemmed Metalearning approach for leukemia informative genes prioritization
title_sort Metalearning approach for leukemia informative genes prioritization
author Rodrigues, Vânia
author_facet Rodrigues, Vânia
Deusdado, Sérgio
author_role author
author2 Deusdado, Sérgio
author2_role author
dc.contributor.none.fl_str_mv Biblioteca Digital do IPB
dc.contributor.author.fl_str_mv Rodrigues, Vânia
Deusdado, Sérgio
Rodrigues, Vânia
dc.subject.por.fl_str_mv informative genes
leukemia
machine learning
metalearning
microarray
topic informative genes
leukemia
machine learning
metalearning
microarray
description The discovery of diagnostic or prognostic biomarkers is fundamental to optimize therapeutics for patients. By enhancing the interpretability of the prediction model, this work is aimed to optimize Leukemia diagnosis while retaining a high-performance evaluation in the identification of informative genes. For this purpose, we used an optimal parameterization of Kernel Logistic Regression method on Leukemia microarray gene expression data classification, applying metalearners to select attributes, reducing the data dimensionality before passing it to the classifier. Pearson correlation and chi-squared statistic were the attribute evaluators applied on metalearners, having information gain as single-attribute evaluator. The implemented models relied on 10-fold cross-validation. The metalearners approach identified 12 common genes, with highest average merit of 0.999. The practical work was developed using the public datamining software WEKA.
publishDate 2018
dc.date.none.fl_str_mv 2018-01-19T10:00:00Z
2020
2020-01-01T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10198/23416
url http://hdl.handle.net/10198/23416
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 10.1515/jib-2019-0069
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron:RCAAP
instname_str FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron_str RCAAP
institution RCAAP
reponame_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
collection Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository.name.fl_str_mv Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
repository.mail.fl_str_mv info@rcaap.pt
_version_ 1833592147258900480