Metalearning approach for leukemia informative genes prioritization
Main Author: | |
---|---|
Publication Date: | 2018 |
Other Authors: | |
Format: | Article |
Language: | eng |
Source: | Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
Download full: | http://hdl.handle.net/10198/23416 |
Summary: | The discovery of diagnostic or prognostic biomarkers is fundamental to optimize therapeutics for patients. By enhancing the interpretability of the prediction model, this work is aimed to optimize Leukemia diagnosis while retaining a high-performance evaluation in the identification of informative genes. For this purpose, we used an optimal parameterization of Kernel Logistic Regression method on Leukemia microarray gene expression data classification, applying metalearners to select attributes, reducing the data dimensionality before passing it to the classifier. Pearson correlation and chi-squared statistic were the attribute evaluators applied on metalearners, having information gain as single-attribute evaluator. The implemented models relied on 10-fold cross-validation. The metalearners approach identified 12 common genes, with highest average merit of 0.999. The practical work was developed using the public datamining software WEKA. |
id |
RCAP_9ac24fd36ff9165bb5bff012f795e8f8 |
---|---|
oai_identifier_str |
oai:bibliotecadigital.ipb.pt:10198/23416 |
network_acronym_str |
RCAP |
network_name_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository_id_str |
https://opendoar.ac.uk/repository/7160 |
spelling |
Metalearning approach for leukemia informative genes prioritizationinformative genesleukemiamachine learningmetalearningmicroarrayThe discovery of diagnostic or prognostic biomarkers is fundamental to optimize therapeutics for patients. By enhancing the interpretability of the prediction model, this work is aimed to optimize Leukemia diagnosis while retaining a high-performance evaluation in the identification of informative genes. For this purpose, we used an optimal parameterization of Kernel Logistic Regression method on Leukemia microarray gene expression data classification, applying metalearners to select attributes, reducing the data dimensionality before passing it to the classifier. Pearson correlation and chi-squared statistic were the attribute evaluators applied on metalearners, having information gain as single-attribute evaluator. The implemented models relied on 10-fold cross-validation. The metalearners approach identified 12 common genes, with highest average merit of 0.999. The practical work was developed using the public datamining software WEKA.Biblioteca Digital do IPBRodrigues, VâniaDeusdado, SérgioRodrigues, Vânia2018-01-19T10:00:00Z20202020-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10198/23416eng10.1515/jib-2019-0069info:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2025-05-07T01:18:34Zoai:bibliotecadigital.ipb.pt:10198/23416Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T11:40:59.318707Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse |
dc.title.none.fl_str_mv |
Metalearning approach for leukemia informative genes prioritization |
title |
Metalearning approach for leukemia informative genes prioritization |
spellingShingle |
Metalearning approach for leukemia informative genes prioritization Rodrigues, Vânia informative genes leukemia machine learning metalearning microarray |
title_short |
Metalearning approach for leukemia informative genes prioritization |
title_full |
Metalearning approach for leukemia informative genes prioritization |
title_fullStr |
Metalearning approach for leukemia informative genes prioritization |
title_full_unstemmed |
Metalearning approach for leukemia informative genes prioritization |
title_sort |
Metalearning approach for leukemia informative genes prioritization |
author |
Rodrigues, Vânia |
author_facet |
Rodrigues, Vânia Deusdado, Sérgio |
author_role |
author |
author2 |
Deusdado, Sérgio |
author2_role |
author |
dc.contributor.none.fl_str_mv |
Biblioteca Digital do IPB |
dc.contributor.author.fl_str_mv |
Rodrigues, Vânia Deusdado, Sérgio Rodrigues, Vânia |
dc.subject.por.fl_str_mv |
informative genes leukemia machine learning metalearning microarray |
topic |
informative genes leukemia machine learning metalearning microarray |
description |
The discovery of diagnostic or prognostic biomarkers is fundamental to optimize therapeutics for patients. By enhancing the interpretability of the prediction model, this work is aimed to optimize Leukemia diagnosis while retaining a high-performance evaluation in the identification of informative genes. For this purpose, we used an optimal parameterization of Kernel Logistic Regression method on Leukemia microarray gene expression data classification, applying metalearners to select attributes, reducing the data dimensionality before passing it to the classifier. Pearson correlation and chi-squared statistic were the attribute evaluators applied on metalearners, having information gain as single-attribute evaluator. The implemented models relied on 10-fold cross-validation. The metalearners approach identified 12 common genes, with highest average merit of 0.999. The practical work was developed using the public datamining software WEKA. |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018-01-19T10:00:00Z 2020 2020-01-01T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10198/23416 |
url |
http://hdl.handle.net/10198/23416 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
10.1515/jib-2019-0069 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia instacron:RCAAP |
instname_str |
FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
collection |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository.name.fl_str_mv |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
repository.mail.fl_str_mv |
info@rcaap.pt |
_version_ |
1833592147258900480 |