Single-channel electroencephalogram analysis using non-linear subspace techniques

Bibliographic Details
Main Author: Teixeira, A.R.
Publication Date: 2007
Other Authors: Alves, N., Tome, A.M., Bohm, M., Lang, E.W., Puntonet, C.G.
Language: eng
Source: Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
Download full: http://hdl.handle.net/10400.26/47394
Summary: In this work, we propose the correction of univariate, single channel EEGs using projective subspace techniques. The biomedical signals which often represent one dimensional time series, need to be transformed to multi-dimensional signal vectors for the latter techniques to be applicable. The transformation can be achieved by embedding an observed signal in its delayed coordinates. We propose the application of two non-linear subspace techniques to the obtained multidimensional signal. One of the techniques consists in a modified version of Singular Spectrum Analysis (SSA) and the other is kernel Principal Component Analysis (KPCA) implemented using a reduced rank approximation of the kernel matrix. Both nonlinear subspace projection techniques are applied to an electroencephalogram (EEG) signal recorded in the frontal channel to extract its prominent electrooculogram (EOG) interference.
id RCAP_99d84ffd2c468b8f1543ce8f8fcec77d
oai_identifier_str oai:comum.rcaap.pt:10400.26/47394
network_acronym_str RCAP
network_name_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository_id_str https://opendoar.ac.uk/repository/7160
spelling Single-channel electroencephalogram analysis using non-linear subspace techniquesSubspace Techniqueslocal SSAKPCAEOGsEEGRemoving ArtifactsIn this work, we propose the correction of univariate, single channel EEGs using projective subspace techniques. The biomedical signals which often represent one dimensional time series, need to be transformed to multi-dimensional signal vectors for the latter techniques to be applicable. The transformation can be achieved by embedding an observed signal in its delayed coordinates. We propose the application of two non-linear subspace techniques to the obtained multidimensional signal. One of the techniques consists in a modified version of Singular Spectrum Analysis (SSA) and the other is kernel Principal Component Analysis (KPCA) implemented using a reduced rank approximation of the kernel matrix. Both nonlinear subspace projection techniques are applied to an electroencephalogram (EEG) signal recorded in the frontal channel to extract its prominent electrooculogram (EOG) interference.IEEERepositório ComumTeixeira, A.R.Alves, N.Tome, A.M.Bohm, M.Lang, E.W.Puntonet, C.G.2023-10-23T10:46:01Z20072007-01-01T00:00:00Zconference objectinfo:eu-repo/semantics/publishedVersionapplication/pdfhttp://hdl.handle.net/10400.26/47394eng10.1109/WISP.2007.4447577info:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2025-05-02T11:24:55Zoai:comum.rcaap.pt:10400.26/47394Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-29T06:45:08.726284Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse
dc.title.none.fl_str_mv Single-channel electroencephalogram analysis using non-linear subspace techniques
title Single-channel electroencephalogram analysis using non-linear subspace techniques
spellingShingle Single-channel electroencephalogram analysis using non-linear subspace techniques
Teixeira, A.R.
Subspace Techniques
local SSA
KPCA
EOGs
EEG
Removing Artifacts
title_short Single-channel electroencephalogram analysis using non-linear subspace techniques
title_full Single-channel electroencephalogram analysis using non-linear subspace techniques
title_fullStr Single-channel electroencephalogram analysis using non-linear subspace techniques
title_full_unstemmed Single-channel electroencephalogram analysis using non-linear subspace techniques
title_sort Single-channel electroencephalogram analysis using non-linear subspace techniques
author Teixeira, A.R.
author_facet Teixeira, A.R.
Alves, N.
Tome, A.M.
Bohm, M.
Lang, E.W.
Puntonet, C.G.
author_role author
author2 Alves, N.
Tome, A.M.
Bohm, M.
Lang, E.W.
Puntonet, C.G.
author2_role author
author
author
author
author
dc.contributor.none.fl_str_mv Repositório Comum
dc.contributor.author.fl_str_mv Teixeira, A.R.
Alves, N.
Tome, A.M.
Bohm, M.
Lang, E.W.
Puntonet, C.G.
dc.subject.por.fl_str_mv Subspace Techniques
local SSA
KPCA
EOGs
EEG
Removing Artifacts
topic Subspace Techniques
local SSA
KPCA
EOGs
EEG
Removing Artifacts
description In this work, we propose the correction of univariate, single channel EEGs using projective subspace techniques. The biomedical signals which often represent one dimensional time series, need to be transformed to multi-dimensional signal vectors for the latter techniques to be applicable. The transformation can be achieved by embedding an observed signal in its delayed coordinates. We propose the application of two non-linear subspace techniques to the obtained multidimensional signal. One of the techniques consists in a modified version of Singular Spectrum Analysis (SSA) and the other is kernel Principal Component Analysis (KPCA) implemented using a reduced rank approximation of the kernel matrix. Both nonlinear subspace projection techniques are applied to an electroencephalogram (EEG) signal recorded in the frontal channel to extract its prominent electrooculogram (EOG) interference.
publishDate 2007
dc.date.none.fl_str_mv 2007
2007-01-01T00:00:00Z
2023-10-23T10:46:01Z
dc.type.driver.fl_str_mv conference object
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10400.26/47394
url http://hdl.handle.net/10400.26/47394
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 10.1109/WISP.2007.4447577
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv IEEE
publisher.none.fl_str_mv IEEE
dc.source.none.fl_str_mv reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron:RCAAP
instname_str FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron_str RCAAP
institution RCAAP
reponame_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
collection Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository.name.fl_str_mv Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
repository.mail.fl_str_mv info@rcaap.pt
_version_ 1833602773034205184