Inventory optimization for Pingo Doce & Go Nova - a deep reinforcement learning approach
| Autor(a) principal: | |
|---|---|
| Data de Publicação: | 2024 |
| Tipo de documento: | Dissertação |
| Idioma: | eng |
| Título da fonte: | Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| Texto Completo: | http://hdl.handle.net/10362/174968 |
Resumo: | Addressing PD&G’s inventory management inefficiencies, this research evaluates the in tegration of predictive analytics and deep reinforcement learning (DRL) to navigate the store’s unique demand influenced by the academic environment. Traditional MRP sys tems’ shortcomings are addressed by implementing SARIMAX, XGBoost, and Neural Prophet models for demand forecasting, alongside DQN and PPO for stock replenish ment optimization. Results demonstrate that advanced forecasting models and DRL may greatly enhance the accuracy of inventory management in comparison to the currently used practices. The deployment of these sophisticated models not only enhances PD&G’s operational efficiency but also pioneers innovative practices in retail inventory management. |
| id |
RCAP_98c040cfdf1b149359df7bd843bdc6b6 |
|---|---|
| oai_identifier_str |
oai:run.unl.pt:10362/174968 |
| network_acronym_str |
RCAP |
| network_name_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| repository_id_str |
https://opendoar.ac.uk/repository/7160 |
| spelling |
Inventory optimization for Pingo Doce & Go Nova - a deep reinforcement learning approachDrl = deep reinforcement learningPpo = proximal policy optimizationMdp = markov decision processMl = machine learningPd&G = Pingo Doce & GoDqn = deep q- learningRl = reinforcement learningDomínio/Área Científica::Ciências Sociais::Economia e GestãoAddressing PD&G’s inventory management inefficiencies, this research evaluates the in tegration of predictive analytics and deep reinforcement learning (DRL) to navigate the store’s unique demand influenced by the academic environment. Traditional MRP sys tems’ shortcomings are addressed by implementing SARIMAX, XGBoost, and Neural Prophet models for demand forecasting, alongside DQN and PPO for stock replenish ment optimization. Results demonstrate that advanced forecasting models and DRL may greatly enhance the accuracy of inventory management in comparison to the currently used practices. The deployment of these sophisticated models not only enhances PD&G’s operational efficiency but also pioneers innovative practices in retail inventory management.Han, QiweiRUNBelchior, Rodrigo Castelo Branco2024-11-11T13:58:13Z2024-02-012024-02-272024-02-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10362/174968TID:203605608enginfo:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2024-11-18T01:42:04Zoai:run.unl.pt:10362/174968Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T19:14:02.783230Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse |
| dc.title.none.fl_str_mv |
Inventory optimization for Pingo Doce & Go Nova - a deep reinforcement learning approach |
| title |
Inventory optimization for Pingo Doce & Go Nova - a deep reinforcement learning approach |
| spellingShingle |
Inventory optimization for Pingo Doce & Go Nova - a deep reinforcement learning approach Belchior, Rodrigo Castelo Branco Drl = deep reinforcement learning Ppo = proximal policy optimization Mdp = markov decision process Ml = machine learning Pd&G = Pingo Doce & Go Dqn = deep q- learning Rl = reinforcement learning Domínio/Área Científica::Ciências Sociais::Economia e Gestão |
| title_short |
Inventory optimization for Pingo Doce & Go Nova - a deep reinforcement learning approach |
| title_full |
Inventory optimization for Pingo Doce & Go Nova - a deep reinforcement learning approach |
| title_fullStr |
Inventory optimization for Pingo Doce & Go Nova - a deep reinforcement learning approach |
| title_full_unstemmed |
Inventory optimization for Pingo Doce & Go Nova - a deep reinforcement learning approach |
| title_sort |
Inventory optimization for Pingo Doce & Go Nova - a deep reinforcement learning approach |
| author |
Belchior, Rodrigo Castelo Branco |
| author_facet |
Belchior, Rodrigo Castelo Branco |
| author_role |
author |
| dc.contributor.none.fl_str_mv |
Han, Qiwei RUN |
| dc.contributor.author.fl_str_mv |
Belchior, Rodrigo Castelo Branco |
| dc.subject.por.fl_str_mv |
Drl = deep reinforcement learning Ppo = proximal policy optimization Mdp = markov decision process Ml = machine learning Pd&G = Pingo Doce & Go Dqn = deep q- learning Rl = reinforcement learning Domínio/Área Científica::Ciências Sociais::Economia e Gestão |
| topic |
Drl = deep reinforcement learning Ppo = proximal policy optimization Mdp = markov decision process Ml = machine learning Pd&G = Pingo Doce & Go Dqn = deep q- learning Rl = reinforcement learning Domínio/Área Científica::Ciências Sociais::Economia e Gestão |
| description |
Addressing PD&G’s inventory management inefficiencies, this research evaluates the in tegration of predictive analytics and deep reinforcement learning (DRL) to navigate the store’s unique demand influenced by the academic environment. Traditional MRP sys tems’ shortcomings are addressed by implementing SARIMAX, XGBoost, and Neural Prophet models for demand forecasting, alongside DQN and PPO for stock replenish ment optimization. Results demonstrate that advanced forecasting models and DRL may greatly enhance the accuracy of inventory management in comparison to the currently used practices. The deployment of these sophisticated models not only enhances PD&G’s operational efficiency but also pioneers innovative practices in retail inventory management. |
| publishDate |
2024 |
| dc.date.none.fl_str_mv |
2024-11-11T13:58:13Z 2024-02-01 2024-02-27 2024-02-01T00:00:00Z |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
| format |
masterThesis |
| status_str |
publishedVersion |
| dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10362/174968 TID:203605608 |
| url |
http://hdl.handle.net/10362/174968 |
| identifier_str_mv |
TID:203605608 |
| dc.language.iso.fl_str_mv |
eng |
| language |
eng |
| dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.source.none.fl_str_mv |
reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia instacron:RCAAP |
| instname_str |
FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
| instacron_str |
RCAAP |
| institution |
RCAAP |
| reponame_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| collection |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| repository.name.fl_str_mv |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
| repository.mail.fl_str_mv |
info@rcaap.pt |
| _version_ |
1833597959227310080 |