Inventory optimization for Pingo Doce & Go Nova - a deep reinforcement learning approach

Detalhes bibliográficos
Autor(a) principal: Belchior, Rodrigo Castelo Branco
Data de Publicação: 2024
Tipo de documento: Dissertação
Idioma: eng
Título da fonte: Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
Texto Completo: http://hdl.handle.net/10362/174968
Resumo: Addressing PD&G’s inventory management inefficiencies, this research evaluates the in tegration of predictive analytics and deep reinforcement learning (DRL) to navigate the store’s unique demand influenced by the academic environment. Traditional MRP sys tems’ shortcomings are addressed by implementing SARIMAX, XGBoost, and Neural Prophet models for demand forecasting, alongside DQN and PPO for stock replenish ment optimization. Results demonstrate that advanced forecasting models and DRL may greatly enhance the accuracy of inventory management in comparison to the currently used practices. The deployment of these sophisticated models not only enhances PD&G’s operational efficiency but also pioneers innovative practices in retail inventory management.
id RCAP_98c040cfdf1b149359df7bd843bdc6b6
oai_identifier_str oai:run.unl.pt:10362/174968
network_acronym_str RCAP
network_name_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository_id_str https://opendoar.ac.uk/repository/7160
spelling Inventory optimization for Pingo Doce & Go Nova - a deep reinforcement learning approachDrl = deep reinforcement learningPpo = proximal policy optimizationMdp = markov decision processMl = machine learningPd&G = Pingo Doce & GoDqn = deep q- learningRl = reinforcement learningDomínio/Área Científica::Ciências Sociais::Economia e GestãoAddressing PD&G’s inventory management inefficiencies, this research evaluates the in tegration of predictive analytics and deep reinforcement learning (DRL) to navigate the store’s unique demand influenced by the academic environment. Traditional MRP sys tems’ shortcomings are addressed by implementing SARIMAX, XGBoost, and Neural Prophet models for demand forecasting, alongside DQN and PPO for stock replenish ment optimization. Results demonstrate that advanced forecasting models and DRL may greatly enhance the accuracy of inventory management in comparison to the currently used practices. The deployment of these sophisticated models not only enhances PD&G’s operational efficiency but also pioneers innovative practices in retail inventory management.Han, QiweiRUNBelchior, Rodrigo Castelo Branco2024-11-11T13:58:13Z2024-02-012024-02-272024-02-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10362/174968TID:203605608enginfo:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2024-11-18T01:42:04Zoai:run.unl.pt:10362/174968Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T19:14:02.783230Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse
dc.title.none.fl_str_mv Inventory optimization for Pingo Doce & Go Nova - a deep reinforcement learning approach
title Inventory optimization for Pingo Doce & Go Nova - a deep reinforcement learning approach
spellingShingle Inventory optimization for Pingo Doce & Go Nova - a deep reinforcement learning approach
Belchior, Rodrigo Castelo Branco
Drl = deep reinforcement learning
Ppo = proximal policy optimization
Mdp = markov decision process
Ml = machine learning
Pd&G = Pingo Doce & Go
Dqn = deep q- learning
Rl = reinforcement learning
Domínio/Área Científica::Ciências Sociais::Economia e Gestão
title_short Inventory optimization for Pingo Doce & Go Nova - a deep reinforcement learning approach
title_full Inventory optimization for Pingo Doce & Go Nova - a deep reinforcement learning approach
title_fullStr Inventory optimization for Pingo Doce & Go Nova - a deep reinforcement learning approach
title_full_unstemmed Inventory optimization for Pingo Doce & Go Nova - a deep reinforcement learning approach
title_sort Inventory optimization for Pingo Doce & Go Nova - a deep reinforcement learning approach
author Belchior, Rodrigo Castelo Branco
author_facet Belchior, Rodrigo Castelo Branco
author_role author
dc.contributor.none.fl_str_mv Han, Qiwei
RUN
dc.contributor.author.fl_str_mv Belchior, Rodrigo Castelo Branco
dc.subject.por.fl_str_mv Drl = deep reinforcement learning
Ppo = proximal policy optimization
Mdp = markov decision process
Ml = machine learning
Pd&G = Pingo Doce & Go
Dqn = deep q- learning
Rl = reinforcement learning
Domínio/Área Científica::Ciências Sociais::Economia e Gestão
topic Drl = deep reinforcement learning
Ppo = proximal policy optimization
Mdp = markov decision process
Ml = machine learning
Pd&G = Pingo Doce & Go
Dqn = deep q- learning
Rl = reinforcement learning
Domínio/Área Científica::Ciências Sociais::Economia e Gestão
description Addressing PD&G’s inventory management inefficiencies, this research evaluates the in tegration of predictive analytics and deep reinforcement learning (DRL) to navigate the store’s unique demand influenced by the academic environment. Traditional MRP sys tems’ shortcomings are addressed by implementing SARIMAX, XGBoost, and Neural Prophet models for demand forecasting, alongside DQN and PPO for stock replenish ment optimization. Results demonstrate that advanced forecasting models and DRL may greatly enhance the accuracy of inventory management in comparison to the currently used practices. The deployment of these sophisticated models not only enhances PD&G’s operational efficiency but also pioneers innovative practices in retail inventory management.
publishDate 2024
dc.date.none.fl_str_mv 2024-11-11T13:58:13Z
2024-02-01
2024-02-27
2024-02-01T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10362/174968
TID:203605608
url http://hdl.handle.net/10362/174968
identifier_str_mv TID:203605608
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron:RCAAP
instname_str FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron_str RCAAP
institution RCAAP
reponame_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
collection Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository.name.fl_str_mv Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
repository.mail.fl_str_mv info@rcaap.pt
_version_ 1833597959227310080