A robust, agile and versatile humanoid locomotion based on analytical control and residual physics

Bibliographic Details
Main Author: Kasaei, Seyed Mohammadreza Mohades
Publication Date: 2022
Language: eng
Source: Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
Download full: http://hdl.handle.net/10773/33545
Summary: Humanoid robots are made to resemble humans but their locomotion abilities are far from ours in terms of agility and versatility. When humans walk on complex terrains or face external disturbances, they combine a set of strategies, unconsciously and efficiently, to regain stability. This thesis tackles the problem of developing a robust omnidirectional walking framework, which is able to generate versatile and agile locomotion on complex terrains. We designed and developed model-based and model-free walk engines and formulated the controllers using different approaches including classical and optimal control schemes and validated their performance through simulations and experiments. These frameworks have hierarchical structures that are composed of several layers. These layers are composed of several modules that are connected together to fade the complexity and increase the flexibility of the proposed frameworks. Additionally, they can be easily and quickly deployed on different platforms. Besides, we believe that using machine learning on top of analytical approaches is a key to open doors for humanoid robots to step out of laboratories. We proposed a tight coupling between analytical control and deep reinforcement learning. We augmented our analytical controller with reinforcement learning modules to learn how to regulate the walk engine parameters (planners and controllers) adaptively and generate residuals to adjust the robot’s target joint positions (residual physics). The effectiveness of the proposed frameworks was demonstrated and evaluated across a set of challenging simulation scenarios. The robot was able to generalize what it learned in one scenario, by displaying human-like locomotion skills in unforeseen circumstances, even in the presence of noise and external pushes.
id RCAP_67b3e93ed087b8e9b08428a9264beddf
oai_identifier_str oai:ria.ua.pt:10773/33545
network_acronym_str RCAP
network_name_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository_id_str https://opendoar.ac.uk/repository/7160
spelling A robust, agile and versatile humanoid locomotion based on analytical control and residual physicsHumanoid robotsBiped locomotionOptimal controlLearning residual physicsProximal Policy Optimization (PPO)Deep Reinforcement Learning (DRL)Humanoid robots are made to resemble humans but their locomotion abilities are far from ours in terms of agility and versatility. When humans walk on complex terrains or face external disturbances, they combine a set of strategies, unconsciously and efficiently, to regain stability. This thesis tackles the problem of developing a robust omnidirectional walking framework, which is able to generate versatile and agile locomotion on complex terrains. We designed and developed model-based and model-free walk engines and formulated the controllers using different approaches including classical and optimal control schemes and validated their performance through simulations and experiments. These frameworks have hierarchical structures that are composed of several layers. These layers are composed of several modules that are connected together to fade the complexity and increase the flexibility of the proposed frameworks. Additionally, they can be easily and quickly deployed on different platforms. Besides, we believe that using machine learning on top of analytical approaches is a key to open doors for humanoid robots to step out of laboratories. We proposed a tight coupling between analytical control and deep reinforcement learning. We augmented our analytical controller with reinforcement learning modules to learn how to regulate the walk engine parameters (planners and controllers) adaptively and generate residuals to adjust the robot’s target joint positions (residual physics). The effectiveness of the proposed frameworks was demonstrated and evaluated across a set of challenging simulation scenarios. The robot was able to generalize what it learned in one scenario, by displaying human-like locomotion skills in unforeseen circumstances, even in the presence of noise and external pushes.Os robôs humanoides são feitos para se parecerem com humanos, mas suas habilidades de locomoção estão longe das nossas em termos de agilidade e versatilidade. Quando os humanos caminham em terrenos complexos ou enfrentam distúrbios externos combinam diferentes estratégias, de forma inconsciente e eficiente, para recuperar a estabilidade. Esta tese aborda o problema de desenvolver um sistema robusto para andar de forma omnidirecional, capaz de gerar uma locomoção para robôs humanoides versátil e ágil em terrenos complexos. Projetámos e desenvolvemos motores de locomoção sem modelos e baseados em modelos. Formulámos os controladores usando diferentes abordagens, incluindo esquemas de controlo clássicos e ideais, e validámos o seu desempenho por meio de simulações e experiências reais. Estes frameworks têm estruturas hierárquicas compostas por várias camadas. Essas camadas são compostas por vários módulos que são conectados entre si para diminuir a complexidade e aumentar a flexibilidade dos frameworks propostos. Adicionalmente, o sistema pode ser implementado em diferentes plataformas de forma fácil. Acreditamos que o uso de aprendizagem automática sobre abordagens analíticas é a chave para abrir as portas para robôs humanoides saírem dos laboratórios. Propusemos um forte acoplamento entre controlo analítico e aprendizagem profunda por reforço. Expandimos o nosso controlador analítico com módulos de aprendizagem por reforço para aprender como regular os parâmetros do motor de caminhada (planeadores e controladores) de forma adaptativa e gerar resíduos para ajustar as posições das juntas alvo do robô (física residual). A eficácia das estruturas propostas foi demonstrada e avaliada em um conjunto de cenários de simulação desafiadores. O robô foi capaz de generalizar o que aprendeu em um cenário, exibindo habilidades de locomoção humanas em circunstâncias imprevistas, mesmo na presença de ruído e impulsos externos.2022-03-18T10:54:31Z2022-02-03T00:00:00Z2022-02-03doctoral thesisinfo:eu-repo/semantics/publishedVersionapplication/pdfhttp://hdl.handle.net/10773/33545engKasaei, Seyed Mohammadreza Mohadesinfo:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2024-05-06T04:36:44Zoai:ria.ua.pt:10773/33545Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T14:14:17.133913Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse
dc.title.none.fl_str_mv A robust, agile and versatile humanoid locomotion based on analytical control and residual physics
title A robust, agile and versatile humanoid locomotion based on analytical control and residual physics
spellingShingle A robust, agile and versatile humanoid locomotion based on analytical control and residual physics
Kasaei, Seyed Mohammadreza Mohades
Humanoid robots
Biped locomotion
Optimal control
Learning residual physics
Proximal Policy Optimization (PPO)
Deep Reinforcement Learning (DRL)
title_short A robust, agile and versatile humanoid locomotion based on analytical control and residual physics
title_full A robust, agile and versatile humanoid locomotion based on analytical control and residual physics
title_fullStr A robust, agile and versatile humanoid locomotion based on analytical control and residual physics
title_full_unstemmed A robust, agile and versatile humanoid locomotion based on analytical control and residual physics
title_sort A robust, agile and versatile humanoid locomotion based on analytical control and residual physics
author Kasaei, Seyed Mohammadreza Mohades
author_facet Kasaei, Seyed Mohammadreza Mohades
author_role author
dc.contributor.author.fl_str_mv Kasaei, Seyed Mohammadreza Mohades
dc.subject.por.fl_str_mv Humanoid robots
Biped locomotion
Optimal control
Learning residual physics
Proximal Policy Optimization (PPO)
Deep Reinforcement Learning (DRL)
topic Humanoid robots
Biped locomotion
Optimal control
Learning residual physics
Proximal Policy Optimization (PPO)
Deep Reinforcement Learning (DRL)
description Humanoid robots are made to resemble humans but their locomotion abilities are far from ours in terms of agility and versatility. When humans walk on complex terrains or face external disturbances, they combine a set of strategies, unconsciously and efficiently, to regain stability. This thesis tackles the problem of developing a robust omnidirectional walking framework, which is able to generate versatile and agile locomotion on complex terrains. We designed and developed model-based and model-free walk engines and formulated the controllers using different approaches including classical and optimal control schemes and validated their performance through simulations and experiments. These frameworks have hierarchical structures that are composed of several layers. These layers are composed of several modules that are connected together to fade the complexity and increase the flexibility of the proposed frameworks. Additionally, they can be easily and quickly deployed on different platforms. Besides, we believe that using machine learning on top of analytical approaches is a key to open doors for humanoid robots to step out of laboratories. We proposed a tight coupling between analytical control and deep reinforcement learning. We augmented our analytical controller with reinforcement learning modules to learn how to regulate the walk engine parameters (planners and controllers) adaptively and generate residuals to adjust the robot’s target joint positions (residual physics). The effectiveness of the proposed frameworks was demonstrated and evaluated across a set of challenging simulation scenarios. The robot was able to generalize what it learned in one scenario, by displaying human-like locomotion skills in unforeseen circumstances, even in the presence of noise and external pushes.
publishDate 2022
dc.date.none.fl_str_mv 2022-03-18T10:54:31Z
2022-02-03T00:00:00Z
2022-02-03
dc.type.driver.fl_str_mv doctoral thesis
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10773/33545
url http://hdl.handle.net/10773/33545
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron:RCAAP
instname_str FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron_str RCAAP
institution RCAAP
reponame_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
collection Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository.name.fl_str_mv Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
repository.mail.fl_str_mv info@rcaap.pt
_version_ 1833594426093469696