On the use of semantic awareness to limit overfitting in genetic programming
| Main Author: | |
|---|---|
| Publication Date: | 2017 |
| Format: | Master thesis |
| Language: | eng |
| Source: | Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| Download full: | http://hdl.handle.net/10362/25011 |
Summary: | Dissertation presented as the partial requirement for obtaining a Master's degree in Data Science and Advanced Analytics |
| id |
RCAP_9660d443a8d16cd66a286e99f5211b1c |
|---|---|
| oai_identifier_str |
oai:run.unl.pt:10362/25011 |
| network_acronym_str |
RCAP |
| network_name_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| repository_id_str |
https://opendoar.ac.uk/repository/7160 |
| spelling |
On the use of semantic awareness to limit overfitting in genetic programmingMachine LearningStatisticsComputational IntelligenceGenetic ProgrammingGenetic AlgorithmEvolutionary AlgorithmOptimization AlgorithmOptimization ProblemOverfittingSemantic AwarenessDissertation presented as the partial requirement for obtaining a Master's degree in Data Science and Advanced AnalyticsMachine learning and statistics provide powerful tools to solving problems of many different shapes. But with the algorithms searching for approximations the problem of overfitting remains present. Genetic Programming describes an algorithmic approach that is likely to produce overfitting solutions. Thus, in order to lessen the risk of overfitting and increasing the generalization ability of genetic programming the use of semantic information is assessed in different ways. A multi-objective system driving the population away from overfitting solutions based on semantic distance is presented alongside alternatives and extensions. The extensions include the use of the semantic signature to increase the amount of information available to the system, as well as the consideration to replace the validation dataset. It is on the one hand concluded that the described approaches and none of the extensions have a positive impact on the generalization ability. But on the other hand it seems that the semantics do contain enough information to appropriately discriminate between overfitting and not overfitting individuals.Vanneschi, LeonardoRUNEnglert, Paul Joscha2017-11-06T15:52:05Z2017-10-272017-10-27T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10362/25011TID:201745615enginfo:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2024-05-22T17:28:29Zoai:run.unl.pt:10362/25011Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T16:59:31.597934Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse |
| dc.title.none.fl_str_mv |
On the use of semantic awareness to limit overfitting in genetic programming |
| title |
On the use of semantic awareness to limit overfitting in genetic programming |
| spellingShingle |
On the use of semantic awareness to limit overfitting in genetic programming Englert, Paul Joscha Machine Learning Statistics Computational Intelligence Genetic Programming Genetic Algorithm Evolutionary Algorithm Optimization Algorithm Optimization Problem Overfitting Semantic Awareness |
| title_short |
On the use of semantic awareness to limit overfitting in genetic programming |
| title_full |
On the use of semantic awareness to limit overfitting in genetic programming |
| title_fullStr |
On the use of semantic awareness to limit overfitting in genetic programming |
| title_full_unstemmed |
On the use of semantic awareness to limit overfitting in genetic programming |
| title_sort |
On the use of semantic awareness to limit overfitting in genetic programming |
| author |
Englert, Paul Joscha |
| author_facet |
Englert, Paul Joscha |
| author_role |
author |
| dc.contributor.none.fl_str_mv |
Vanneschi, Leonardo RUN |
| dc.contributor.author.fl_str_mv |
Englert, Paul Joscha |
| dc.subject.por.fl_str_mv |
Machine Learning Statistics Computational Intelligence Genetic Programming Genetic Algorithm Evolutionary Algorithm Optimization Algorithm Optimization Problem Overfitting Semantic Awareness |
| topic |
Machine Learning Statistics Computational Intelligence Genetic Programming Genetic Algorithm Evolutionary Algorithm Optimization Algorithm Optimization Problem Overfitting Semantic Awareness |
| description |
Dissertation presented as the partial requirement for obtaining a Master's degree in Data Science and Advanced Analytics |
| publishDate |
2017 |
| dc.date.none.fl_str_mv |
2017-11-06T15:52:05Z 2017-10-27 2017-10-27T00:00:00Z |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
| format |
masterThesis |
| status_str |
publishedVersion |
| dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10362/25011 TID:201745615 |
| url |
http://hdl.handle.net/10362/25011 |
| identifier_str_mv |
TID:201745615 |
| dc.language.iso.fl_str_mv |
eng |
| language |
eng |
| dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.source.none.fl_str_mv |
reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia instacron:RCAAP |
| instname_str |
FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
| instacron_str |
RCAAP |
| institution |
RCAAP |
| reponame_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| collection |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| repository.name.fl_str_mv |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
| repository.mail.fl_str_mv |
info@rcaap.pt |
| _version_ |
1833596351036784640 |