Universal learning machine with genetic programming
| Autor(a) principal: | |
|---|---|
| Data de Publicação: | 2019 |
| Outros Autores: | , |
| Idioma: | eng |
| Título da fonte: | Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| Texto Completo: | https://doi.org/10.5220/0007808101150122 |
Resumo: | Re, A., Vanneschi, L., & Castelli, M. (2019). Universal learning machine with genetic programming. In J. J. Merelo, J. Garibaldi, A. Linares-Barranco, K. Madani, K. Warwick, & K. Warwick (Eds.), Proceedings of the 11th International Joint Conference on Computational Intelligence (Vol. 1, pp. 115-122). (IJCCI 2019 - Proceedings of the 11th International Joint Conference on Computational Intelligence). Viena: SciTePress. |
| id |
RCAP_fd19ebc0def8f332cc0bc108c33fa131 |
|---|---|
| oai_identifier_str |
oai:run.unl.pt:10362/87065 |
| network_acronym_str |
RCAP |
| network_name_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| repository_id_str |
https://opendoar.ac.uk/repository/7160 |
| spelling |
Universal learning machine with genetic programmingEnsemblesGenetic programmingGeometric semantic genetic programmingMachine learningMaster algorithmArtificial IntelligenceComputational Theory and MathematicsRe, A., Vanneschi, L., & Castelli, M. (2019). Universal learning machine with genetic programming. In J. J. Merelo, J. Garibaldi, A. Linares-Barranco, K. Madani, K. Warwick, & K. Warwick (Eds.), Proceedings of the 11th International Joint Conference on Computational Intelligence (Vol. 1, pp. 115-122). (IJCCI 2019 - Proceedings of the 11th International Joint Conference on Computational Intelligence). Viena: SciTePress.This paper presents a proof of concept. It shows that Genetic Programming (GP) can be used as a "universal" machine learning method, that integrates several different algorithms, improving their accuracy. The system we propose, called Universal Genetic Programming (UGP) works by defining an initial population of programs, that contains the models produced by several different machine learning algorithms. The use of elitism allows UGP to return as a final solution the best initial model, in case it is not able to evolve a better one. The use of genetic operators driven by semantic awareness is likely to improve the initial models, by combining and mutating them. On three complex real-life problems, we present experimental evidence that UGP is actually able to improve the models produced by all the studied machine learning algorithms in isolation.SciTePress - Science and Technology PublicationsInformation Management Research Center (MagIC) - NOVA Information Management SchoolNOVA Information Management School (NOVA IMS)RUNRe, AlessandroVanneschi, LeonardoCastelli, Mauro2019-11-12T05:04:12Z2019-01-012019-01-01T00:00:00Zconference objectinfo:eu-repo/semantics/publishedVersion8application/pdfhttps://doi.org/10.5220/0007808101150122eng9789897583841PURE: 15379539http://www.scopus.com/inward/record.url?scp=85074267111&partnerID=8YFLogxKhttps://doi.org/10.5220/0007808101150122info:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2024-11-18T01:40:17Zoai:run.unl.pt:10362/87065Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T17:13:27.812882Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse |
| dc.title.none.fl_str_mv |
Universal learning machine with genetic programming |
| title |
Universal learning machine with genetic programming |
| spellingShingle |
Universal learning machine with genetic programming Re, Alessandro Ensembles Genetic programming Geometric semantic genetic programming Machine learning Master algorithm Artificial Intelligence Computational Theory and Mathematics |
| title_short |
Universal learning machine with genetic programming |
| title_full |
Universal learning machine with genetic programming |
| title_fullStr |
Universal learning machine with genetic programming |
| title_full_unstemmed |
Universal learning machine with genetic programming |
| title_sort |
Universal learning machine with genetic programming |
| author |
Re, Alessandro |
| author_facet |
Re, Alessandro Vanneschi, Leonardo Castelli, Mauro |
| author_role |
author |
| author2 |
Vanneschi, Leonardo Castelli, Mauro |
| author2_role |
author author |
| dc.contributor.none.fl_str_mv |
Information Management Research Center (MagIC) - NOVA Information Management School NOVA Information Management School (NOVA IMS) RUN |
| dc.contributor.author.fl_str_mv |
Re, Alessandro Vanneschi, Leonardo Castelli, Mauro |
| dc.subject.por.fl_str_mv |
Ensembles Genetic programming Geometric semantic genetic programming Machine learning Master algorithm Artificial Intelligence Computational Theory and Mathematics |
| topic |
Ensembles Genetic programming Geometric semantic genetic programming Machine learning Master algorithm Artificial Intelligence Computational Theory and Mathematics |
| description |
Re, A., Vanneschi, L., & Castelli, M. (2019). Universal learning machine with genetic programming. In J. J. Merelo, J. Garibaldi, A. Linares-Barranco, K. Madani, K. Warwick, & K. Warwick (Eds.), Proceedings of the 11th International Joint Conference on Computational Intelligence (Vol. 1, pp. 115-122). (IJCCI 2019 - Proceedings of the 11th International Joint Conference on Computational Intelligence). Viena: SciTePress. |
| publishDate |
2019 |
| dc.date.none.fl_str_mv |
2019-11-12T05:04:12Z 2019-01-01 2019-01-01T00:00:00Z |
| dc.type.driver.fl_str_mv |
conference object |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| status_str |
publishedVersion |
| dc.identifier.uri.fl_str_mv |
https://doi.org/10.5220/0007808101150122 |
| url |
https://doi.org/10.5220/0007808101150122 |
| dc.language.iso.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
9789897583841 PURE: 15379539 http://www.scopus.com/inward/record.url?scp=85074267111&partnerID=8YFLogxK https://doi.org/10.5220/0007808101150122 |
| dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
8 application/pdf |
| dc.publisher.none.fl_str_mv |
SciTePress - Science and Technology Publications |
| publisher.none.fl_str_mv |
SciTePress - Science and Technology Publications |
| dc.source.none.fl_str_mv |
reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia instacron:RCAAP |
| instname_str |
FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
| instacron_str |
RCAAP |
| institution |
RCAAP |
| reponame_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| collection |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| repository.name.fl_str_mv |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
| repository.mail.fl_str_mv |
info@rcaap.pt |
| _version_ |
1833596530118885376 |