Previsão de produção de energia elétrica através de fontes de energia renováveis
| Autor(a) principal: | |
|---|---|
| Data de Publicação: | 2015 |
| Tipo de documento: | Dissertação |
| Idioma: | por |
| Título da fonte: | Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| Texto Completo: | http://hdl.handle.net/10362/16378 |
Resumo: | A capacidade de prever precisamente a produção de energia renovável é extremamente relevante tanto do ponto de vista económico como para controlo da estabilidade da rede elétrica. Para tal, é necessário realizar uma previsão das condições meteorológicas adjacentes à produção de energia a partir de fontes de energia renovável. Vários modelos de previsão têm sido utilizados para este fim, desde modelos atmosféricos a modelos estatísticos, onde se destacam métodos como Redes Neuronais Artificiais ou a Metodologia de Box & Jenkins. Lidar com dados meteo-rológicos pode revelar algumas complicações devido à possível instabilidade das medições, com-plicando o desenvolvimento de um modelo de previsão adequado. Neste trabalho pretende-se realizar a previsão de produção a partir de uma instalação fotovoltaica e um gerador eólico através do uso da Metodologia de Box & Jenkins para desenvolver um modelo capaz de realizar a previsão das condições meteorológicas para diferentes horizontes temporais medidos no topo do edifício do Departamento de Engenharia Eletrotécnica (DEE) da Faculdade de Ciências e Tecnologia (FCT), Universidade Nova de Lisboa (UNL), e usando esses valores para calcular a produção de energia. Os resultados obtidos revelaram um bom desempenho quando comparados os resultados previstos com os resultados reais para o mesmo período de tempo, garantindo que podem ser utilizados para calcular a previsão de potência produzida através das instalações presentes no local e encorajando novos estudos no tema. |
| id |
RCAP_9502d6b6d44081251a5df1f78dcde744 |
|---|---|
| oai_identifier_str |
oai:run.unl.pt:10362/16378 |
| network_acronym_str |
RCAP |
| network_name_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| repository_id_str |
https://opendoar.ac.uk/repository/7160 |
| spelling |
Previsão de produção de energia elétrica através de fontes de energia renováveisDomínio/Área Científica::Engenharia e Tecnologia::Engenharia Eletrotécnica, Eletrónica e InformáticaA capacidade de prever precisamente a produção de energia renovável é extremamente relevante tanto do ponto de vista económico como para controlo da estabilidade da rede elétrica. Para tal, é necessário realizar uma previsão das condições meteorológicas adjacentes à produção de energia a partir de fontes de energia renovável. Vários modelos de previsão têm sido utilizados para este fim, desde modelos atmosféricos a modelos estatísticos, onde se destacam métodos como Redes Neuronais Artificiais ou a Metodologia de Box & Jenkins. Lidar com dados meteo-rológicos pode revelar algumas complicações devido à possível instabilidade das medições, com-plicando o desenvolvimento de um modelo de previsão adequado. Neste trabalho pretende-se realizar a previsão de produção a partir de uma instalação fotovoltaica e um gerador eólico através do uso da Metodologia de Box & Jenkins para desenvolver um modelo capaz de realizar a previsão das condições meteorológicas para diferentes horizontes temporais medidos no topo do edifício do Departamento de Engenharia Eletrotécnica (DEE) da Faculdade de Ciências e Tecnologia (FCT), Universidade Nova de Lisboa (UNL), e usando esses valores para calcular a produção de energia. Os resultados obtidos revelaram um bom desempenho quando comparados os resultados previstos com os resultados reais para o mesmo período de tempo, garantindo que podem ser utilizados para calcular a previsão de potência produzida através das instalações presentes no local e encorajando novos estudos no tema.Pereira, PedroRUNLourenço, João Filipe Inácio2016-02-02T17:27:14Z2015-112016-012015-11-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10362/16378porinfo:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2024-05-22T17:20:16Zoai:run.unl.pt:10362/16378Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T16:51:02.535175Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse |
| dc.title.none.fl_str_mv |
Previsão de produção de energia elétrica através de fontes de energia renováveis |
| title |
Previsão de produção de energia elétrica através de fontes de energia renováveis |
| spellingShingle |
Previsão de produção de energia elétrica através de fontes de energia renováveis Lourenço, João Filipe Inácio Domínio/Área Científica::Engenharia e Tecnologia::Engenharia Eletrotécnica, Eletrónica e Informática |
| title_short |
Previsão de produção de energia elétrica através de fontes de energia renováveis |
| title_full |
Previsão de produção de energia elétrica através de fontes de energia renováveis |
| title_fullStr |
Previsão de produção de energia elétrica através de fontes de energia renováveis |
| title_full_unstemmed |
Previsão de produção de energia elétrica através de fontes de energia renováveis |
| title_sort |
Previsão de produção de energia elétrica através de fontes de energia renováveis |
| author |
Lourenço, João Filipe Inácio |
| author_facet |
Lourenço, João Filipe Inácio |
| author_role |
author |
| dc.contributor.none.fl_str_mv |
Pereira, Pedro RUN |
| dc.contributor.author.fl_str_mv |
Lourenço, João Filipe Inácio |
| dc.subject.por.fl_str_mv |
Domínio/Área Científica::Engenharia e Tecnologia::Engenharia Eletrotécnica, Eletrónica e Informática |
| topic |
Domínio/Área Científica::Engenharia e Tecnologia::Engenharia Eletrotécnica, Eletrónica e Informática |
| description |
A capacidade de prever precisamente a produção de energia renovável é extremamente relevante tanto do ponto de vista económico como para controlo da estabilidade da rede elétrica. Para tal, é necessário realizar uma previsão das condições meteorológicas adjacentes à produção de energia a partir de fontes de energia renovável. Vários modelos de previsão têm sido utilizados para este fim, desde modelos atmosféricos a modelos estatísticos, onde se destacam métodos como Redes Neuronais Artificiais ou a Metodologia de Box & Jenkins. Lidar com dados meteo-rológicos pode revelar algumas complicações devido à possível instabilidade das medições, com-plicando o desenvolvimento de um modelo de previsão adequado. Neste trabalho pretende-se realizar a previsão de produção a partir de uma instalação fotovoltaica e um gerador eólico através do uso da Metodologia de Box & Jenkins para desenvolver um modelo capaz de realizar a previsão das condições meteorológicas para diferentes horizontes temporais medidos no topo do edifício do Departamento de Engenharia Eletrotécnica (DEE) da Faculdade de Ciências e Tecnologia (FCT), Universidade Nova de Lisboa (UNL), e usando esses valores para calcular a produção de energia. Os resultados obtidos revelaram um bom desempenho quando comparados os resultados previstos com os resultados reais para o mesmo período de tempo, garantindo que podem ser utilizados para calcular a previsão de potência produzida através das instalações presentes no local e encorajando novos estudos no tema. |
| publishDate |
2015 |
| dc.date.none.fl_str_mv |
2015-11 2015-11-01T00:00:00Z 2016-02-02T17:27:14Z 2016-01 |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
| format |
masterThesis |
| status_str |
publishedVersion |
| dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10362/16378 |
| url |
http://hdl.handle.net/10362/16378 |
| dc.language.iso.fl_str_mv |
por |
| language |
por |
| dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.source.none.fl_str_mv |
reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia instacron:RCAAP |
| instname_str |
FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
| instacron_str |
RCAAP |
| institution |
RCAAP |
| reponame_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| collection |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| repository.name.fl_str_mv |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
| repository.mail.fl_str_mv |
info@rcaap.pt |
| _version_ |
1833596237872365568 |