Previsão de produção de energia eléctrica através de fontes de energia renováveis

Detalhes bibliográficos
Autor(a) principal: Mexia, Ricardo Miguel Bairrada
Data de Publicação: 2015
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
Texto Completo: http://hdl.handle.net/10362/16366
Resumo: Com o passar do tempo, a aposta em energias renováveis tem vindo a aumentar. De forma a prever o que se irá produzir com os sistemas de energias renováveis, é necessário desenvolver modelos preditivos, específicos para cada situação. No Departamento de Engenharia Electrotécnica (DEE) da Faculdade de Ciências e Tecnologia (FCT) encontra-se um sistema fotovoltaico e um sistema eólico em funcionamento, e assim de forma a ter uma estimativa da produção de energia de ambos os sistemas, propôs-se nesta dissertação desenvolver um modelo de previsão de produção de energia eléctrica para os sistemas fotovoltaico e eólico. Para desenvolver o modelo preditivo pretendido, em primeiro lugar recolheram-se os dados meteorológicos e de produção de energia no ano 2013 e realizou-se um processamento desses mesmos dados, com a linguagem de programação Java, uma vez que não se encontravam na melhor forma para serem analisados e utilizados para construção do modelo. Após realizado o processamento, como os dados do ano de 2014 existentes não eram suficientes para testar o modelo depois de ser desenvolvido, geraram-se dados meteorológicos para 2014 tendo em consideração os dados de 2013. Para os dados de energia produzida, criaram-se superfícies de aproximação a partir dos dados de 2013, e utilizando os dados meteorológicos gerados para 2014 obteve-se uma aproximação da energia produzida. Tendo todos os dados necessários para a construção do modelo e posteriormente para o testar, iniciouse o pré-processamento dos dados com recurso a filtros e à Análise em Componentes Principais. Por fim, construíram-se duas estruturas diferentes de Redes Neuronais Artificiais de modo a verificar qual se adequa melhor aos sistemas existentes. Para validar o modelo construído com base em redes neuronais testou-se o modelo com os dados de 2014, diferentes dos utilizados na sua construção. Com os resultados obtidos concluiu-se que o filtro mais adequado para o pré-processamento é o filtro Savitzky-Golay e a estrutura do modelo mais indicada para o pretendido será a Rede Neuronal Artificial (RNA) com apenas uma camada intermédia.
id RCAP_3e6dd4baad8c1b3e02153a8c6fbf45cc
oai_identifier_str oai:run.unl.pt:10362/16366
network_acronym_str RCAP
network_name_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository_id_str https://opendoar.ac.uk/repository/7160
spelling Previsão de produção de energia eléctrica através de fontes de energia renováveisEnergias renováveisRedes neuronaisPrevisãoEnergia elétricaMeteorologiaDomínio/Área Científica::Engenharia e Tecnologia::Engenharia Eletrotécnica, Eletrónica e InformáticaCom o passar do tempo, a aposta em energias renováveis tem vindo a aumentar. De forma a prever o que se irá produzir com os sistemas de energias renováveis, é necessário desenvolver modelos preditivos, específicos para cada situação. No Departamento de Engenharia Electrotécnica (DEE) da Faculdade de Ciências e Tecnologia (FCT) encontra-se um sistema fotovoltaico e um sistema eólico em funcionamento, e assim de forma a ter uma estimativa da produção de energia de ambos os sistemas, propôs-se nesta dissertação desenvolver um modelo de previsão de produção de energia eléctrica para os sistemas fotovoltaico e eólico. Para desenvolver o modelo preditivo pretendido, em primeiro lugar recolheram-se os dados meteorológicos e de produção de energia no ano 2013 e realizou-se um processamento desses mesmos dados, com a linguagem de programação Java, uma vez que não se encontravam na melhor forma para serem analisados e utilizados para construção do modelo. Após realizado o processamento, como os dados do ano de 2014 existentes não eram suficientes para testar o modelo depois de ser desenvolvido, geraram-se dados meteorológicos para 2014 tendo em consideração os dados de 2013. Para os dados de energia produzida, criaram-se superfícies de aproximação a partir dos dados de 2013, e utilizando os dados meteorológicos gerados para 2014 obteve-se uma aproximação da energia produzida. Tendo todos os dados necessários para a construção do modelo e posteriormente para o testar, iniciouse o pré-processamento dos dados com recurso a filtros e à Análise em Componentes Principais. Por fim, construíram-se duas estruturas diferentes de Redes Neuronais Artificiais de modo a verificar qual se adequa melhor aos sistemas existentes. Para validar o modelo construído com base em redes neuronais testou-se o modelo com os dados de 2014, diferentes dos utilizados na sua construção. Com os resultados obtidos concluiu-se que o filtro mais adequado para o pré-processamento é o filtro Savitzky-Golay e a estrutura do modelo mais indicada para o pretendido será a Rede Neuronal Artificial (RNA) com apenas uma camada intermédia.Pereira, PedroRUNMexia, Ricardo Miguel Bairrada2016-02-02T17:13:33Z2015-032016-012015-03-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10362/16366porinfo:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2024-05-22T17:20:15Zoai:run.unl.pt:10362/16366Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T16:51:01.143084Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse
dc.title.none.fl_str_mv Previsão de produção de energia eléctrica através de fontes de energia renováveis
title Previsão de produção de energia eléctrica através de fontes de energia renováveis
spellingShingle Previsão de produção de energia eléctrica através de fontes de energia renováveis
Mexia, Ricardo Miguel Bairrada
Energias renováveis
Redes neuronais
Previsão
Energia elétrica
Meteorologia
Domínio/Área Científica::Engenharia e Tecnologia::Engenharia Eletrotécnica, Eletrónica e Informática
title_short Previsão de produção de energia eléctrica através de fontes de energia renováveis
title_full Previsão de produção de energia eléctrica através de fontes de energia renováveis
title_fullStr Previsão de produção de energia eléctrica através de fontes de energia renováveis
title_full_unstemmed Previsão de produção de energia eléctrica através de fontes de energia renováveis
title_sort Previsão de produção de energia eléctrica através de fontes de energia renováveis
author Mexia, Ricardo Miguel Bairrada
author_facet Mexia, Ricardo Miguel Bairrada
author_role author
dc.contributor.none.fl_str_mv Pereira, Pedro
RUN
dc.contributor.author.fl_str_mv Mexia, Ricardo Miguel Bairrada
dc.subject.por.fl_str_mv Energias renováveis
Redes neuronais
Previsão
Energia elétrica
Meteorologia
Domínio/Área Científica::Engenharia e Tecnologia::Engenharia Eletrotécnica, Eletrónica e Informática
topic Energias renováveis
Redes neuronais
Previsão
Energia elétrica
Meteorologia
Domínio/Área Científica::Engenharia e Tecnologia::Engenharia Eletrotécnica, Eletrónica e Informática
description Com o passar do tempo, a aposta em energias renováveis tem vindo a aumentar. De forma a prever o que se irá produzir com os sistemas de energias renováveis, é necessário desenvolver modelos preditivos, específicos para cada situação. No Departamento de Engenharia Electrotécnica (DEE) da Faculdade de Ciências e Tecnologia (FCT) encontra-se um sistema fotovoltaico e um sistema eólico em funcionamento, e assim de forma a ter uma estimativa da produção de energia de ambos os sistemas, propôs-se nesta dissertação desenvolver um modelo de previsão de produção de energia eléctrica para os sistemas fotovoltaico e eólico. Para desenvolver o modelo preditivo pretendido, em primeiro lugar recolheram-se os dados meteorológicos e de produção de energia no ano 2013 e realizou-se um processamento desses mesmos dados, com a linguagem de programação Java, uma vez que não se encontravam na melhor forma para serem analisados e utilizados para construção do modelo. Após realizado o processamento, como os dados do ano de 2014 existentes não eram suficientes para testar o modelo depois de ser desenvolvido, geraram-se dados meteorológicos para 2014 tendo em consideração os dados de 2013. Para os dados de energia produzida, criaram-se superfícies de aproximação a partir dos dados de 2013, e utilizando os dados meteorológicos gerados para 2014 obteve-se uma aproximação da energia produzida. Tendo todos os dados necessários para a construção do modelo e posteriormente para o testar, iniciouse o pré-processamento dos dados com recurso a filtros e à Análise em Componentes Principais. Por fim, construíram-se duas estruturas diferentes de Redes Neuronais Artificiais de modo a verificar qual se adequa melhor aos sistemas existentes. Para validar o modelo construído com base em redes neuronais testou-se o modelo com os dados de 2014, diferentes dos utilizados na sua construção. Com os resultados obtidos concluiu-se que o filtro mais adequado para o pré-processamento é o filtro Savitzky-Golay e a estrutura do modelo mais indicada para o pretendido será a Rede Neuronal Artificial (RNA) com apenas uma camada intermédia.
publishDate 2015
dc.date.none.fl_str_mv 2015-03
2015-03-01T00:00:00Z
2016-02-02T17:13:33Z
2016-01
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10362/16366
url http://hdl.handle.net/10362/16366
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron:RCAAP
instname_str FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron_str RCAAP
institution RCAAP
reponame_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
collection Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository.name.fl_str_mv Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
repository.mail.fl_str_mv info@rcaap.pt
_version_ 1833596237819936768