Bits and Biases

Bibliographic Details
Main Author: Macieira, Fernando Jorge Ferreira
Publication Date: 2025
Other Authors: Pinto, Diego Costa, Oliveira, Tiago, Yanaze, Mitsuru Higuchi
Language: eng
Source: Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
Download full: http://hdl.handle.net/10362/182608
Summary: Macieira, F. J. F., Pinto, D. C., Oliveira, T., & Yanaze, M. H. (2025). Bits and Biases: Exploring perceptions in human-like AI interactions using the Stereotype Content Model. In M. Arami, V. Corvello, & P. Baudier (Eds.), Proceedings of the 7th International Conference on Finance, Economics, Management and IT Business (pp. 161-166). Article 24 SciTePress - Science and Technology Publications. https://doi.org/10.5220/0013192700003956
id RCAP_8d33e06f577f41b150bd22ebdbbb323c
oai_identifier_str oai:run.unl.pt:10362/182608
network_acronym_str RCAP
network_name_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository_id_str https://opendoar.ac.uk/repository/7160
spelling Bits and BiasesExploring perceptions in human-like AI interactions using the Stereotype Content ModelSCMCASAAIchatbotanthropomorphismSDG 8 - Decent Work and Economic GrowthSDG 9 - Industry, Innovation, and InfrastructureMacieira, F. J. F., Pinto, D. C., Oliveira, T., & Yanaze, M. H. (2025). Bits and Biases: Exploring perceptions in human-like AI interactions using the Stereotype Content Model. In M. Arami, V. Corvello, & P. Baudier (Eds.), Proceedings of the 7th International Conference on Finance, Economics, Management and IT Business (pp. 161-166). Article 24 SciTePress - Science and Technology Publications. https://doi.org/10.5220/0013192700003956In an AI-infused world, user trust in responses generated by autonomous systems is of critical importance. Building upon the work of Ahn, Kim, and Sung (2022), this study examines the impact of stereotypes attributed to chatbots on user trust using the Stereotype Content Model (SCM), which relies on dimensions like warmth and competence for universal cross-culture social judgment. This research investigates how age-related stereotypes influence user perceptions of anthropomorphic AI, specifically chatbots, and their perceived warmth and competence. We conducted two experiments: Study 1 used AI-generated illustrations to present "young" and "old" chatbot personas, while Study 2 used realistic photos. Participants watched pre-recorded interactions with the chatbot "Dave" and evaluated its warmth and competence on a 9-point Likert scale. Data were collected through Prolific, ensuring a diverse sample. Study 1 found no significant differences in perceptions of warmth and competence between the young and old chatbot personas. However, Study 2 revealed that the younger persona was perceived as warmer than the older one, indicating that the realism of the chatbot's appearance affects stereotype activation. These results underscore the importance of aligning chatbot personas with user expectations to enhance trust and satisfaction.SciTePress - Science and Technology PublicationsNOVA Information Management School (NOVA IMS)Information Management Research Center (MagIC) - NOVA Information Management SchoolRUNMacieira, Fernando Jorge FerreiraPinto, Diego CostaOliveira, TiagoYanaze, Mitsuru Higuchi2025-04-24T21:18:00Z2025-042025-04-01T00:00:00Zconference objectinfo:eu-repo/semantics/publishedVersion6application/pdfhttp://hdl.handle.net/10362/182608eng978-989-758-748-1PURE: 106544426https://doi.org/10.5220/0013192700003956info:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2025-05-19T01:39:18Zoai:run.unl.pt:10362/182608Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-29T06:33:32.334050Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse
dc.title.none.fl_str_mv Bits and Biases
Exploring perceptions in human-like AI interactions using the Stereotype Content Model
title Bits and Biases
spellingShingle Bits and Biases
Macieira, Fernando Jorge Ferreira
SCM
CASA
AI
chatbot
anthropomorphism
SDG 8 - Decent Work and Economic Growth
SDG 9 - Industry, Innovation, and Infrastructure
title_short Bits and Biases
title_full Bits and Biases
title_fullStr Bits and Biases
title_full_unstemmed Bits and Biases
title_sort Bits and Biases
author Macieira, Fernando Jorge Ferreira
author_facet Macieira, Fernando Jorge Ferreira
Pinto, Diego Costa
Oliveira, Tiago
Yanaze, Mitsuru Higuchi
author_role author
author2 Pinto, Diego Costa
Oliveira, Tiago
Yanaze, Mitsuru Higuchi
author2_role author
author
author
dc.contributor.none.fl_str_mv NOVA Information Management School (NOVA IMS)
Information Management Research Center (MagIC) - NOVA Information Management School
RUN
dc.contributor.author.fl_str_mv Macieira, Fernando Jorge Ferreira
Pinto, Diego Costa
Oliveira, Tiago
Yanaze, Mitsuru Higuchi
dc.subject.por.fl_str_mv SCM
CASA
AI
chatbot
anthropomorphism
SDG 8 - Decent Work and Economic Growth
SDG 9 - Industry, Innovation, and Infrastructure
topic SCM
CASA
AI
chatbot
anthropomorphism
SDG 8 - Decent Work and Economic Growth
SDG 9 - Industry, Innovation, and Infrastructure
description Macieira, F. J. F., Pinto, D. C., Oliveira, T., & Yanaze, M. H. (2025). Bits and Biases: Exploring perceptions in human-like AI interactions using the Stereotype Content Model. In M. Arami, V. Corvello, & P. Baudier (Eds.), Proceedings of the 7th International Conference on Finance, Economics, Management and IT Business (pp. 161-166). Article 24 SciTePress - Science and Technology Publications. https://doi.org/10.5220/0013192700003956
publishDate 2025
dc.date.none.fl_str_mv 2025-04-24T21:18:00Z
2025-04
2025-04-01T00:00:00Z
dc.type.driver.fl_str_mv conference object
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10362/182608
url http://hdl.handle.net/10362/182608
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 978-989-758-748-1
PURE: 106544426
https://doi.org/10.5220/0013192700003956
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv 6
application/pdf
dc.publisher.none.fl_str_mv SciTePress - Science and Technology Publications
publisher.none.fl_str_mv SciTePress - Science and Technology Publications
dc.source.none.fl_str_mv reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron:RCAAP
instname_str FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron_str RCAAP
institution RCAAP
reponame_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
collection Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository.name.fl_str_mv Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
repository.mail.fl_str_mv info@rcaap.pt
_version_ 1833602717832970240