Matrix approach to hypercomplex Appell polynomials
Main Author: | |
---|---|
Publication Date: | 2017 |
Other Authors: | , |
Format: | Article |
Language: | eng |
Source: | Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
Download full: | http://hdl.handle.net/10773/21347 |
Summary: | Recently the authors presented a matrix representation approach to real Appell polynomials essentially determined by a nilpotent matrix with natural number entries. It allows to consider a set of real Appell polynomials as solution of a suitable first order initial value problem. The paper aims to confirm that the unifying character of this approach can also be applied to the construction of homogeneous Appell polynomials that are solutions of a generalized Cauchy–Riemann system in Euclidean spaces of arbitrary dimension. The result contributes to the development of techniques for polynomial approximation and interpolation in non-commutative Hypercomplex Function Theories with Clifford algebras. |
id |
RCAP_8ccc9a31fabbc2bf378a066d2e0984c8 |
---|---|
oai_identifier_str |
oai:ria.ua.pt:10773/21347 |
network_acronym_str |
RCAP |
network_name_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository_id_str |
https://opendoar.ac.uk/repository/7160 |
spelling |
Matrix approach to hypercomplex Appell polynomialsHypercomplex differentiabilityAppell polynomialsCreation matrixPascal matrixRecently the authors presented a matrix representation approach to real Appell polynomials essentially determined by a nilpotent matrix with natural number entries. It allows to consider a set of real Appell polynomials as solution of a suitable first order initial value problem. The paper aims to confirm that the unifying character of this approach can also be applied to the construction of homogeneous Appell polynomials that are solutions of a generalized Cauchy–Riemann system in Euclidean spaces of arbitrary dimension. The result contributes to the development of techniques for polynomial approximation and interpolation in non-commutative Hypercomplex Function Theories with Clifford algebras.Elsevier2018-01-05T16:36:43Z2017-01-01T00:00:00Z2017info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10773/21347eng0168-927410.1016/j.apnum.2016.07.006Aceto, LídiaMalonek, Helmuth R.Tomaz, Graçainfo:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2024-05-06T04:11:02Zoai:ria.ua.pt:10773/21347Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T14:00:06.267141Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse |
dc.title.none.fl_str_mv |
Matrix approach to hypercomplex Appell polynomials |
title |
Matrix approach to hypercomplex Appell polynomials |
spellingShingle |
Matrix approach to hypercomplex Appell polynomials Aceto, Lídia Hypercomplex differentiability Appell polynomials Creation matrix Pascal matrix |
title_short |
Matrix approach to hypercomplex Appell polynomials |
title_full |
Matrix approach to hypercomplex Appell polynomials |
title_fullStr |
Matrix approach to hypercomplex Appell polynomials |
title_full_unstemmed |
Matrix approach to hypercomplex Appell polynomials |
title_sort |
Matrix approach to hypercomplex Appell polynomials |
author |
Aceto, Lídia |
author_facet |
Aceto, Lídia Malonek, Helmuth R. Tomaz, Graça |
author_role |
author |
author2 |
Malonek, Helmuth R. Tomaz, Graça |
author2_role |
author author |
dc.contributor.author.fl_str_mv |
Aceto, Lídia Malonek, Helmuth R. Tomaz, Graça |
dc.subject.por.fl_str_mv |
Hypercomplex differentiability Appell polynomials Creation matrix Pascal matrix |
topic |
Hypercomplex differentiability Appell polynomials Creation matrix Pascal matrix |
description |
Recently the authors presented a matrix representation approach to real Appell polynomials essentially determined by a nilpotent matrix with natural number entries. It allows to consider a set of real Appell polynomials as solution of a suitable first order initial value problem. The paper aims to confirm that the unifying character of this approach can also be applied to the construction of homogeneous Appell polynomials that are solutions of a generalized Cauchy–Riemann system in Euclidean spaces of arbitrary dimension. The result contributes to the development of techniques for polynomial approximation and interpolation in non-commutative Hypercomplex Function Theories with Clifford algebras. |
publishDate |
2017 |
dc.date.none.fl_str_mv |
2017-01-01T00:00:00Z 2017 2018-01-05T16:36:43Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10773/21347 |
url |
http://hdl.handle.net/10773/21347 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
0168-9274 10.1016/j.apnum.2016.07.006 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier |
publisher.none.fl_str_mv |
Elsevier |
dc.source.none.fl_str_mv |
reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia instacron:RCAAP |
instname_str |
FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
collection |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository.name.fl_str_mv |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
repository.mail.fl_str_mv |
info@rcaap.pt |
_version_ |
1833594211576840192 |